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Lets perform an imaginary but actually simple experiment, consisting on measuring

the mass change of a solution. Put some water into a vessel (the appropriate vessel here

is the pycnometer, for precision), as illustrated in Figure 1A. The volume of the vessel is

V . The concentration of pure (bulk) water will be called cbulk (molecules/volume), and

thus the number of water molecules inside the vessel will be Nbulk(V ) = cbulkV .

Figure 1: The volume displacement experiment.

Now lets add to this vessel a solute. In one simple case, the solute will simply occupy

part of the volume of the vessel, and some solution will leak out of the vessel, as indicated

in Figure 1B.

Lets count the number of water molecules inside and leaked out from the vessel.

Within the vessel a number N(V ) of water molecules remain, and thus the number of

leaked molecules will be Nbulk(V ) −N(V ), as indicated in the figure.

The number of leaked molecules, Nbulk(V ) −N(V ), corresponds to a volume of pure

water of [Nbulk(V ) − N(V )]/cbulk. In other words, the volume occupied by the water

molecules inside the vessel changed by

∆V = −Nbulk(V ) −N(V )

cbulk

We will define G(V ) ≡ −∆V/nu, where nu is the number of mols of solute added, such

that

G(V ) =
N(V ) −Nbulk(V )

nucbulk
. (1)

Therefore, G(V ) is the volume of solvent displaced by the insertion of the solute, per

mole of the solute.



G(V ) can be easily measured given the concentration of the solute in the solution and

the masses of the vessel after and before the addition of the solute. The mass difference

after solute addition is

∆m = MwNbulk(V ) − [MwN(V ) + MucuV ]

where Mw is the mass of a water molecule, Mu is the mass of the solute molecule, and cu is

the concentration (molecules/volume) of the solute in the solution. Simple manipulation

leads to the number of molecules leaked from the vessel,

Nbulk(V ) −N(V ) =
1

Mw

[∆m + MucuV ].

Therefore, obtaining G(V ) of Equation 1 is simple, and depends only on the measure of

the difference in mass of the vessel with pure solvent and with a solution of the solute of

interest.

G(V ) consists of (minus) the volume of solvent molecules that was displaced, or ac-

commodated, by the addition of the solute, per mole of solute. If the solvent is overall

displaced by the solute, G(V ) is negative by its definition. If the addition of the solute

increases the number of solvent molecules required to fill in the volume V , G(V ) is posi-

tive, and corresponds the volume that was occupied by the additional solvent molecules

in the pure solvent.

Integral from a molecular perspective

Now, lets connect G(V ) to the microscopic distribution of the solvent molecules. It is

clear by definition that the number of solvent molecules within the volume is the integral

over the volume of the concentration of the solvent, that is, in each case,

Nbulk(V ) =

∫
V

cbulkdV

and

N(V ) =

∫
V

c(~r)dV

where c(~r) is the concentration, or molecular density, of the solvent at position ~r in the

solution. The integrals are computed over the entire volume V .

It follows that G(V ) can in principle be computed by

G(V ) =
1

nucbulk

[∫
V

c(~r)dV −
∫
V

cbulkdV

]
or, by noting that cbulk is a constant for the integration,

G(V ) =
1

nu

∫
V

c(~r)

cbulk
dV −

∫
V

cbulk
cbulk

dV =
1

nu

∫
V

c(~r)

cbulk
dV −

∫
V

dV =
1

nu

∫
V

[
c(~r)

cbulk
− 1

]
dV



We define now the distribution function g(~r), as

g(~r) =
c(~r)

cbulk
(2)

in such a way that G(V ) can be written in its most common form,

G(V ) =
1

nu

∫
V

[g(~r) − 1] dV (3)

Therefore, G(V ) can be computed from the distribution of the solvent molecules inside

the volume V , connecting the microscopic distribution of the solvent molecules to the

macroscopic observation of mass change of the solution.

Identical solute and solvent

What happens if the solute and the solvent are the same? In this case, the N(V ) −
Nbulk(V ) is simply the number of molecules added to the vessel, and the volume displaced

is simply the volume of the solvent associated with this number of molecules, with the

same density. Therefore, since cbulk = Nbulk(V )/V and nu = −(N(V ) − Nbulk(V ))/NA,

where NA is Avogadro’s number, Equation 1 becomes

G(V ) ==
N(V ) −Nbulk(V )

[−(N(V ) −Nbulk(V ))/NA][Nbulk(V )/V ]
= − NA

Nbulk(V )
V

or simply

G(V ) = − V

nbulk(V )

where nbulk(V ) is the number of moles of solvent that fit in the volume V with bulk

density. V/nbulk(V ) is the molar volume of the solvent in bulk, thus, in this case, G(V )

turns out to be simply (minus) the molar volume of the solvent.

The meanings of the g(~r) (Equation 2) and of the corresponding KB integral (Equa-

tion 3) must be clarified in this case. If all molecules are considered equally, the integral

of g(~r) over the entire volume is simply the volume of the vessel,∫
V

c(~r)

cbulk
dV =

1

cbulk

∫
V

c(~r)dV =
N(V )

cbulk
= V

and thus, the corresponding G(V ), from Equation 3, is zero. This is not consistent with

the macroscopic interpretation given above. Therefore, c(~r) must not be interpreted as

the density of the solvent in general, but as the density of the solvent molecules that were

in the vessel before the addition of the new solvent molecules, which are to be interpreted

as an additional solute. With this interpretation c(~r) < cbulk, and the integral of the

distribution function corresponds to the displaced volume of solvent.



Limit of G(V ) for very small additions of solute

We considered above the case of the addition of a finite ammout of solute, nu, to a vessel

containing the pure solvent, and defined G(V ) = −∆V/nu from the volume of solvent

molecules leaked by the addition of the solute. In the limit where nu is very small, we

can write

lim
nu→0

G(V ) = − dV

dnu

This is a more precisely defined property. It is the volume leaked from the vessel by

the addition of the solute to a solution with properties identical to those prior to the

addition of the solute. That is, in the example above, it is the volume leaked from the

vessel associated to the addition of a very small amount of solute to pure water. This

is not the most general scenario, as the addition of the solute might occur to a solution

already with a finite concentration the solute.

In the general case, for every possible original solution, the addition of a solute will

cause a volume change. The volume of solution leaked will be associated to the corre-

sponding G(V ) integral, which is a property associated to the addition of the solute to a

solution of concentration cbulk, without significant change in this concentration.

We can be more rigorous, therefore, if we associate the macroscopic volume change in

the solution with

∆V =

∫ n1

n0

dV

dnu

dn

where we integrate the volume change with the addition of the solute for all concentrations

between the first and second concentrations experimentally probed. Of course, if the

concentrations are close enough, we expect dV/dnu to be constant, and Equation 1 holds

exactly.


