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Abstract: Molecular Dynamics is a powerful methodology for the comprehension at molecular level of many
chemical and biochemical systems. The theories and techniques developed for structural and thermodynamic analyses
are well established, and many software packages are available. However, designing starting configurations for
dynamics can be cumbersome. Easily generated regular lattices can be used when simple liquids or mixtures are studied.
However, for complex mixtures, polymer solutions or solid adsorbed liquids (for example) this approach is inefficient,
and it turns out to be very hard to obtain an adequate coordinate file. In this article, the problem of obtaining an adequate
initial configuration is treated as a “packing” problem and solved by an optimization procedure. The initial configuration
is chosen in such a way that the minimum distance between atoms of different molecules is greater than a fixed
tolerance. The optimization uses a well-known algorithm for box-constrained minimization. Applications are given for
biomolecule solvation, many-component mixtures, and interfaces. This approach can reduce the work of designing
starting configurations from days or weeks to few minutes or hours, in an automated fashion. Packing optimization is
also shown to be a powerful methodology for space search in docking of small ligands to proteins. This is demonstrated
by docking of the thyroid hormone to its nuclear receptor.
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Introduction

Molecular Dynamics (MD) is a powerful technique for the com-
prehension at molecular level of a great variety of chemical pro-
cesses.1 With the enhancement of computational resources, more
and more complex systems are being studied, as large biochemical
systems,2 zeolite encapsulated liquids3 and many-component so-
lutions.4 Simulations are accompanied by the development of
adequate theories for their analyses and corresponding software for
manipulation and visualization of coordinate and trajectory files.5,6

Many packages for performing simulations are now commercially
or freely available.5,7,8

The simulations need starting points that must have adequate
energy requirements, given by experimental data. The density of
the system must be provided, specifying the size of the simulation
box. In general, the energy distribution of the molecules is adjusted
to the desired temperature by scaling. Both simulation and tem-
perature scaling involve the resolution of Newtonian equations of
motion by means of a numerical method.1,9 The kinetic energy of
the atoms is scaled in such a way that the temperature fits the

desired one at every step. This procedure is repeated at every
integration step for a reasonable time period and takes the total
energy of the system to the thermodinamic internal energy at the
corresponding temperature.1

However, if the starting configuration has close atoms, the
temperature scaling is disrupted by excessive potentials that ac-
celerate molecules over the accepted velocities for almost any
reasonable integration time step. In fact, the starting coordinate file
must be reliable in the sense that it must not exhibit overlapping or
close atoms, so that temperature scaling can be performed with
reasonable time steps for a relatively fast energy equilibration of
the system.

For simple liquids or solutions with small solutes, the initial
configurations are usually regular lattices with random velocities
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attributed to the atoms. For polymers or biopolymers in solution, it
is common to remove the molecules that are in close contact,
assuming that the removed solvent molecules will correspond
approximately to the volume of large solutes. More complex
systems generally need manipulation or energy optimization to
make them reliable, maintaining solvent and solute concentrations
and densities. This is, in general, a very hard work that might take
several days or even weeks to generate an initial point that guar-
antees safe pairwise potentials.

In this article, we suggest to represent the problem of finding
the initial positions of the molecules as a “packing problem” (see
ref. 17). The goal is to place known objects in a finite domain in
such a way that the distance between any pair of points of different
objects is larger that a threshold tolerance. In our case, objects are
molecules and points are atoms. Following this idea, we define a
mathematical model that gives rise to an optimization problem.
The mathematical (optimization) problem consists in the minimi-
zation of a function of (generally many) variables, subject to
bounds. This is the so-called box-constrained minimization prob-
lem in mathematical literature (see refs. 19–24, among others).

For solving the optimization problem, we use BOX-QUACAN
(see ref. 22), a well-established method for which freely available
software exists (see ref. 26). BOX-QUACAN is a local-minimi-
zation method, in the sense that, in theory, its limit points are only
guaranteed to be critical points of the original problem. For this
reason, we coded a multistart procedure for our problem, by means
of which different initial approximations are given with the aim of
finding a global minimizer, among the local ones.

The same procedure is proposed to handle the general problem
of docking of small ligands to proteins. Usually, the docking
problem involves evaluation of potential-energy functions and
exhaustive search in the space for local minima. Because the
evaluation of Lennard–Jones potentials is very time-consuming,
the packing model is better for space searching, and requires only
local energy minimization for determination of final configurations
with effective ligand–protein interactions. This methodology does
not consider potential-energy functions, and turned out to be quite
efficient for finding candidate cavities in the protein structure for
the docking of the rigid 3,3�,5�-triiodotreonine (T3) to its nuclear
receptor. This article includes a comparison of this method against
the usual technique of potential energy minimization.

This article is organized as follows. In the next section we
present the mathematical model and we discuss some of its essen-
tial features. Then we describe properties and usage of BOX-
QUACAN. Finally, we discuss the input parameters, and then the
examples are presented and discussed.

The Packing Model

Let us call nmol the total number of molecules that we want to
place in a region of the three-dimensional space defined by the
bounds �k � xk � uk, k � 1, 2, 3. For each i � 1, . . . , nmol,
let natom(i) be the number of atoms of the ith molecule. Mole-
cules can be grouped in different types (water, hormonium, and so
on), but this is irrelevant for the model description. Each molecule
is represented by the orthogonal coordinates of its atoms. We call
barycenter of a molecule to the point whose coordinates are the

arithmetic averages of the coordinates of the atoms. To facilitate
the visualization, assume that the origin is the barycenter of all the
molecules. For all i � 1, . . . , nmol, j � 1, . . . , natom(i), let

A�i, j� � �a1
ij, a2

ij, a3
ij�

be the coordinates of the jth atom of the ith molecule.
Now, suppose that one rotates the ith molecule sequentially

around the axes x1, x2, and x3, being �i, �i, and �i the angles that
define such rotations. Moreover, suppose that after these rotations,
the whole molecule is displaced so that its barycenter, instead of
the origin, becomes Ci � (c1

i , c2
i , c3

i ). These movements trans-
form the atom of coordinates A(i, j) in a displaced atom of
coordinates

P�i, j� � � p1
ij, p2

ij, p3
ij �.

Observe that P(i, j) is always a function of (Ci, �i, �i, �i) but we
do not make this dependence explicit to simplify the notation.

Our objective is to find angles �i, �i, �i and displacements Ci,
i � 1, . . . , nmol, in such a way that, for all j � 1, . . . , natom(i),
j� � 1, . . . , natom(i�),

�P�i, j� � P�i�, j���2 � �, whenever i 	 i� (1)

and, for all i � 1, . . . , nmol, j � 1, . . . , natom(i),

�k � pk
ij � uk for k � 1, 2, 3, (2)

where � � 0 is a user-specified tolerance. The symbol ��� stands for
the usual Euclidian distance. In other words, the rotated and
displaced molecules must remain in the specified box and the
squared distance between any pair of atoms must not be less
than �.

The objectives (1) and (2) lead us to define the following merit
function f:

f�C1, . . . , Cnmol, �1, �1, �1, . . . , �nmol, �nmol, �nmol�

� �
i�1

nmol�1 �
i��i�1

nmol �
j�1

natom�i� �
j��1

matom�i��

max�0, � � �P�i, j� � P�i�, j���2	2


 �
i�1

nmol �
j�1

natom�i� �
k�1

3

max�0, pk
ij � uk, �k � pk

ij	2. (3)

Note that f(C1, . . . , Cnmol, �1, �1, �1, . . . , �nmol, �nmol,
�nmol) is nonnegative for all angles and displacements. Moreover,
f vanishes if, and only if, the objectives (1) and (2) are fulfilled.
This means that, if we find displacements and angles where f � 0,
the atoms of the resulting molecules are sufficiently separated.
This leads us to define the following minimization problem:

Minimize f�C1, . . . , Cnmol, �1, �1, �1, . . . , �nmol, �nmol, �nmol� (4)

subject to �k � ck
i � uk � i � 1, . . . , nmol, k � 1, 2, 3.
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The objective function f is continuous and differentiable, al-
though their second derivatives are discontinuous. The number of
variables is 6 
 nmol (three angles and a displacement per mol-
ecule). The analytical expression of f is cumbersome, because it
involves consecutive rotations and its first derivatives are not very
easy to code. However, optimization experience lead us to pay the
cost of writing a code for computing derivatives, with the expect-
ancy that algorithms that take advantage of first-order information
are really profitable, especially when the number of variables is
large (see ref. 20). Having a code that computes f and its gradient,
we are prepared to solve (4) using BOX-QUACAN.

The Optimization Solver

BOX-QUACAN is a box-constraint solver introduced in ref. 22. It
is an iterative method that, at each iteration, approximates the
objective function by a quadratic and minimizes this quadratic
model in the box determined by the natural constraints and an
auxiliary box that represents the region where the quadratic ap-
proximation is reliable (trust region). If the objective function is
sufficiently reduced at the (approximate) minimizer of the qua-
dratic, the corresponding trial point is accepted as new iterate.
Otherwise, the trust region is reduced. The type of problems for
which BOX-QUACAN is designed is

Minimize f �x� subject to x � �, (5)

where f : �n 3 � has continuous first derivatives and � is the
n-dimensional box given by

� � � x � �n��i�xi�ui}.

In our case, x � (C1, . . . , Cnmol, �1, �1, �1, . . . , �nmol, �nmol,
�nmol), so f( x) � f(C1, . . . , Cnmol, �1, �1, �1, . . . , �nmol, �nmol,
�nmol).

Implementations of BOX-QUACAN for general box-con-
strained problems can be found in ref. 26. The main steps of the
algorithm are given below:

Algorithm Box

Assume that the initial point x0 � � is given. Let k be the iteration
counter and set k4 0. Let �min � 0 be the “minimum trust-region
radius.”

Step 1. If the projected gradient of f at xk is small, according to
some user-given tolerance, terminate the execution of the
algorithm.

Step 2. Let Bk (an n 
 n symmetric matrix) be an approximation
to the Hessian of f at xk. Define Qk(d), the quadratic
approximation of f( xk � d) � f( xk), as

Qk�d� �
1

2
dTBkd 
 
f� xk�Td.

Let � � �min be the current trust-region radius.
Step 3. Use QUACAN to solve, approximately, the bound con-

strained quadratic subproblem

Minimize Qk�d� (6)

subject to
xk 
 d � �, �� � di � � � i � 1, . . . , n. (7)

Step 4. If
f� xk 
 d� � f� xk� 
 0.1 Qk�d� (8)

define xk�1 � xk � d, and k 4 k � 1 and go to Step
1. If (8) does not hold, reduce � (e.g., � 4 �/2) and go
to Step 3.

This algorithm is especially designed to handle large-scale
problems. For this reason, no factorization of matrices are used at
any stage. The domain of the problem, called � here is, as
mentioned before, an n-dimensional box. It can be divided in
disjoint faces of dimensions 0, 1, . . . , n according to the variables
that, at each point, are at the bounds. For example, vertices are
faces of dimension 0, edges are faces of dimension 1 and the
interior of the box is an n-dimensional face.

QUACAN is the quadratic solver used to deal with the sub-
problems of the box-constrained algorithm BOX. The subproblem
consists in the minimization of a quadratic function subject to an
auxiliary box, which is the intersection of the original box with the
trust region. QUACAN visits the different faces of its domain
using conjugate gradients on the interior of each face and
“chopped gradients” as search directions to leave the faces. See
refs. 25, 22, and 18 for a description of the current implementation
of QUACAN. At each iteration of QUACAN, a matrix-vector
product of the Hessian approximation and a vector is needed.
Because Hessian approximations are difficult to compute, we use
the “Truncated Newton” approach, so that each Hessian 
 vector
product is replaced by an incremental quotient of gradients along
the direction given by the vector. Namely, in (6)–(7) we use the
approximation

Bkd �

f� xk 
 hd� � 
f� xk�

h

where h � 0 is a small increment.
The general convergence results of BOX-QUACAN have been

given in ref. 22. Because the objective function has continuous
partial derivatives and the Hessian approximations are bounded,
every limit point of a sequence generated by BOX is a critical
point. This means that the algorithm approximates a point that
satisfies first-order optimality conditions with an arbitrary preci-
sion. In general, these critical points are local minimizers. In other
words, the algorithm eventually stops at Step 1 satisfying the
optimality criterion.

Program Usage

Our computer code is called Packmol. For generating a coordinate
file box it requires the cartesian coordinates of an isolated mole-
cule of each type, the number of molecules of each type, the
minimum desired distance between pairs of atoms, the box-type
specification and the coordinates of the box. Cartesian coordinates
of isolated molecules are simply obtained6 and the number of
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molecules of each type must be defined by the user. The minimum
desired distance may be set to the approximate maximum hydro-
gen bond distance of 2 Å even if atoms with very large Van der
Waals radius are present (see next section) or to any other value if
necessary.

The box-type specification is a useful resource of the program
that allows the molecules to be generated with specified positions
and rotations. This resource is useful for creating boxes with
interfacial molecules or any other ordered structure. For usual
boxes, maximum and minimum cartesian coordinates of the atoms
of each type should be set, specifying the box.

This code is also valuable for docking of small molecules in
large structures as zeolites or proteins.29 Docking is accomplished
by establishing a fixed position for the macromolecule and defin-
ing the ligand box within the protein or zeolite cores.

Numerical Experiments

For illustrating our approach, three complex systems were gener-
ated: (a) a large box containing a 929-atoms protein solvated by a
7 mol L�1 solution of urea in water represented by 1063 water and
182 urea molecules. (b) A 600-molecules box with 10 different
components represented by 60 molecules each. (c) An interface of
1000 water and 200 chloroform molecules with a 35-atoms hy-
drofobic molecule positioned at the interface. A fourth group of
starting configurations [test problem (d)] with three different mol-
ecules in three different concentrations is presented. These are
rather simple configurations; however, they were already used in
molecular dynamics simulations.27 The convergence of energies
from the initial box to the thermalized system are shown here. The
protein volume in test problem (a) was calculated using the pack-
age Tinker.5 The minimum allowed distance was set to 2 Å in all
test problems, and box sizes were set to fit the experimental
densities.

The starting configurations found for the test problems (a), (b),
and (c) are shown in Figure 1. Larger problems have greater initial
objective function values and require more iterations, as expected.
The solvated protein is an especially hard problem for the optimi-
zation algorithm because solvent molecules have limited mobility
within the box due to the presence of the large protein molecule.
However, providing starting points with homogeneous solvent
density (a resource already implemented in Packmol) the solution
was also found. For mixtures with interfaces or many components,
as in test problems (b) and (c), the optimization is easier and
convergence is achieved in a small number of iterations.

In Figure 1a the solvated protein is shown. The distribution of
water and urea molecules around the protein is uniform due to the
randomness of the initial point. The protein, represented with a
space-filling model, had its barycenter fixed at the center of the
box. In Figure 1b the interface between water and chloroform is
presented, and the 3,5,3�-triiodo-L-thyronine (T3) molecule is em-
phasized. The ability of the program for specifying molecular or
box coordinates is well represented in this picture.

Figures 1c, d, and e show three different representations of the
10-component mixture. Figure 1c shows the distribution of water
and sodium ions, as spacefilling models, and Figure 1d shows
ball-and-stick representations of the benzoic acid and terbutanol

molecules. These pictures well represent the distribution of these
species in the box. On the other hand, Figure 1e shows all the
species as spacefilling models with one color per specie type. This
picture well represents the compactness of the structure, which is
not evident with stick representations.

Finally, the three-component mixtures of the last example are
composed by water, urea, and the hydrofobic iodine containing
molecule T3. This is an interesting system for testing the energy
convergence in thermalization from an initial box because the
Lennard–Jones cutoff radius for the iodine atom is 4.3 Å,31 which
is much larger than the minimum allowed distance of 2 Å. The
proximity of two atoms leads to the disruption of the system
whenever the potential energy given by the Lennard–Jones inter-
action is too large. Because the cutoff radius is the crucial param-
eter for the repulsion at short distances, the smooth convergence of
the energy in a system containing iodine reveals that the minimum
allowed distance is restrictive enough for building valuable start-
ing configurations. Figure 2 shows the energy convergence for
three boxes containing one T3 molecule and different concentra-
tions of urea in water, giving a total of 479 molecules. The time
step used for thermalization was 1 fs, and the numerical integration
was performed using the well known algorithm Shake.9 The en-
ergy of these systems converge to the equilibrium internal energy
of the solution after only 5 ps of thermalization, which is quite
acceptable. Because the iodine atom possess one of the largest Van
der Waals radius, the distance of 2 Å seems to be good enough for
any system.

A comparison of an MD run of an unprepared configuration
and a configuration designed by our method is in order. A simple
system was chosen, similar to the mixture of test problem (d), but
without urea molecules. The mixture was composed of 478 water
molecules and one T3 molecule. The first test was to build a water
box and soak the T3 into it with the xyzedit tool of the package
Tinker, designed for this purpose. This program sets the molecules
within the box with random positions for their barycenters. The
resulting configuration had 758 atoms of different molecules with
a distance less than 2.0 Å, including 262 with distances less than
1.0 Å. The simulation, with the dynamic program of the same
package, with a time step of 0.001 fs and a temperature-coupling
bath at 298 K at every step started with a temperature of 138,231
K that went to 9,948,740 K in nine dynamic steps, when the system
totally disrupted. This means that even thermalization was not
possible for this system due to very repulsive interactions. Second,
a random starting configuration was generated and its OPLSAA
potential energy was optimized with two procedures: the
L-BFGS10,11 implemented in the program minimize of the package
Tinker and the BOX-QUACAN algorithm. The system potential
energy was 9.2 
 1012 kcal mol�1 before optimization. The
L-BFGS optimization failed (and was interrupted) due to ill-
definition of the objective function at trial points. (Potentials tend
to infinity when the distance between atoms tend to zero.) Simu-
lations starting from the final configuration obtained by L-BFGS
and using the code dynamic disrupted at the first integration step.

The BOX-QUACAN full-potential optimization produced a
configuration (very likely, close to a local minimizer) with 1.2 

107 kcal mol�1 of potential energy. Simulation from the best
configuration obtained also disrupted at the first step even with
very short time steps, as 0.1 fs. These results with two different
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implementations of two different and well established optimization
methods show that the optimization of full potentials, although it
might work in some cases, is not a good strategy for the general
problem of generating starting configurations. This is due to the
fact that full potential energy functions are not defined over all the

space and their complexity turns the optimization of potentials a
very hard task. We also tried to use simulated annealing to find an
initial configuration for MD but, as expected, the process finished
with disruption because, essentially, simulated annealing is an MD
technique in this case.

Figure 1. Pictorial representations for test problems (a), (b), and (c) and for the docking problem.
Solvated protein: (a) Interface; (b) ten-component mixture; (c–e) comparison between the solutions of the
docking with packmol (orange) and the docking with full OPLSAA potential evaluation (f).
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Other alternative strategies, as building regular lattices, remov-
ing manually overlapping molecules and editing coordinate files
are sometimes successful, but demand a lot of human time and are
increasingly difficult or even impossible for large or complex
systems. The same trial system was also generated using packmol
in less than 3 min and the simulation ran smothly with a integration
time step of 1.0 fs. Thermalization was achieved in less than 5 ps
as in the slightly more complex, urea containing, systems of test
problem (d).

The docking example is as follows: the 3989 atom TR-�LBD
nuclear receptor protein30 was fixed with its barycenter at the
origin and no rotation. The structure is in its holo form, i.e., it has
the ligand (T3 molecule, 35 atoms) placed at its actual binding site.
The ligand was removed and one T3 molecule was randomly
placed within a box that included the protein core. Two hundred
cycles of 100 iterations of BOX-QUACAN were taken with ran-
dom initial coordinates for the ligand molecule. The minimum
distance allowed was set to 1.6 Å. This small distance was chosen
aiming the definition of an effective space-searching algorithm for
further energy minimization. Twelve solutions were found for the
docking problem, that were further optimized with the full
OPLSAA potentials12,13,14 for the T3 and protein. Only intermo-
lecular interactions were computed and the molecules were kept
rigid. The total packing time was 38.15 min and the OPLSAA
potential energy minimization of the packing solutions took 43.33
min, which gives a total docking time of 81.48 min. The average
OPLSAA energy of these solutions was �10547 kcal mol�1. The
average time for finding each of these solutions was 6.79 min.

The full OPLSAA potential energy minimization from random
starting configurations was also taken for comparison against our
packing method. This procedure is similar to the most popular
docking procedures in the sense that full Lennard–Jones and
charge-to-charge interactions are optimized.15,16 BOX-QUACAN
was used as the optimization algorithm. It must be mentioned that
grid-based methodologies16 exist that turn the function evaluation
faster (although not exact). Of course, the same grid techniques
can be applied to our packing function based on the distance. We
will show that the packing technique combined with local full
potential optimization produces solutions of the same value and
with similar frequency as other methods and, on the other hand, is

much faster. As in the packing procedure, 200 cycles of OPLSAA
potential energy optimization were performed. Only intermolecu-
lar interactions were evaluated and the protein and the hormone
were kept rigid. The overall optimization time was 357.70 min.
Because the packing procedure gave 12 solutions, the 12 best
solutions of this procedure were taken for comparison. The aver-
age OPLSAA potential energy for these solutions was �10869
kcal mol�1, which is less than the average energy of the potential
optimized packing solutions by 3%. However, taking the 13 best
solutions, we get an average energy of �10376 kcal mol�1, which
is higher than the average optimized potential packing solutions.
The comparison between the energy of the solutions shows, then,
that the quality of the solutions, taken as their OPLSAA energy, is
similar. The comparison of the best solution of each methodology,
as shown in Figure 2(f) confirms this conclusion. Both structures,
as all the best solutions of each method, are placed in the active site
of the protein. The average computer time for each of the 12
solutions for the full OPLSAA optimization was, however, 29.67
min. Because there are no meaningful differences regarding the
quality of the solutions and the computational time necessary for
finding a solution with the packing procedure is 4.4 times less, we
conclude that packing optimization is indeed a good strategy for
space searching.

Two characteristics of the objective function proposed here
make the packing strategy more successful than full potential
optimization: first, its evaluation is much faster because the func-
tion is much simpler than the Lennard–Jones and charge-to-charge
interactions. Second, the function proposed is continuous, has
continuous first derivatives, and is defined over all the space. This
makes the optimization with almost any procedure faster and more
effective than Lennard–Jones-based minimizations. The imple-
mentation of this strategy, with BOX-QUACAN or other optimi-
zation method, is simple and deserves to be considered in the
development of large-scale docking packages.

These results show that packing optimization is a very fast and
effective procedure for space searching, because cavity searching
does not need potential-energy evaluations. The development of
this methodology for docking, including flexibility for the ligand
molecule and evaluation of solutions by local energy minimiza-
tion, are future steps in the development of Packmol.

Conclusions

Packing optimization is a useful tool for building molecular dy-
namics starting configurations, which is almost independent of
system’s complexity, and, as so, is able to avoid cumbersome
manipulation of structures. The original motivation for this ap-
proach was to build rather simple boxes, as the one presented in
Example 4. For these boxes, Packmol finds adequate starting
configurations in few minutes. Therefore, we encourage its use
even for very simple systems, because it provides molecules that
are randomly distributed in the box, making the process of ther-
malization faster than when one uses regular lattices. The objective
function proposed in this article is much cheaper to compute than
Lennard–Jones potentials and provides adequate configurations as
well. For docking, our approach enhances space searching so that
only local energy optimization for final conformational energy

Figure 2. Energy convergence profiles for the solutions of test prob-
lem (d). Note energy convergence soon after 5 ps of thermalization in
all cases.
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comparison is required. Our code is already being successfully
used in the Molecular Dynamics research group of Prof. Munir S.
Skaf both for simple mixtures27,28 and more complex ones, as
water encapsulated zeolites.29

Acknowledgments

We are indebted to two anonymous referees for useful comments
that helped us to improve this article.

References

1. Frenkel, D.; Smit, B. Understanding Molecular Simulations, From
Algorithms to Applications; Academic Press: San Diego, 1996.

2. Duan, Y.; Kollman, P. A. Science 1998, 282, 740.
3. Arya, G.; Chang, H. C.; Maginn, E. J. J Chem Phys 2001, 115, 8112.
4. Vishnyakov, A.; Neimark, A. V. J Phys Chem B 2001, 105, 7830.
5. Ponder, J. W. TINKER Software Tools for Molecular Design, Version

3.8, Oct. 2000.
6. Schaftenaar, G.; Noordik, J. H. J Comput-Aided Mol Design 2000, 14,

123.
7. Brooks, B. R., et al. J Comput Chem 1983, 4, 187.
8. Pearlman, D. A., et al. Comp Phys Commun 1995, 91, 1.
9. Ryckaert, J. P., et al. J Comput Phys 1977, 23, 327.

10. Liu, D. C.; Nocedal, J. Math Prog 1989, 45, 503.
11. Nocedal, J. Math Comp 1980, 35, 773.

12. Jorgensen, W. L.; Maxwell, D. S.; Tirado–Rives, J. J Am Chem Soc
1996, 117, 11225.

13. Maxell, D. S.; Tirado–Rives, J.; Jorgensen, W. L. J Comput Chem
1995, 16, 984.

14. Jorgensen, W. L.; McDonald, N. A. THEOCHEM-J Mol Struct 1998,
424, 145.

15. Vieth, M., et al. J Comput Chem 1998, 19, 1623.
16. Morris, G. M., et al. J Comput Chem 1998, 19, 1639.
17. Aste, T.; Wearie, D. The Pursuit of Perfect Packing; Institute of

Physics Publishing: London, 2000.
18. Bielschowsky, R. H., et al. Invest Oper 1998, 7, 67.
19. Conn, A. R.; Gould, N. I. M.; Toint, Ph. L. Trust-Region Methods;

SIAM-MPS: Philadelphia, 2000.
20. Dennis, J. E.; Schnabel, R. B. Numerical Methods for Unconstrained

Optimization and Nonlinear Equations; Prentice-Hall: Englewood
Cliffs, NJ, 1983.

21. Facchinei, F.; Júdice, J. J.; Soares, J. SIAM J Opt 1998, 8, 158.
22. Friedlander, A.; Martı́nez, J. M.; Santos, S. A. Appl Math Opt 1994,

30, 235.
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