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Abstract
Background: Many algorithms exist for protein structural alignment, based on internal protein
coordinates or on explicit superposition of the structures. These methods are usually successful
for detecting structural similarities. However, current practical methods are seldom supported by
convergence theories. In particular, although the goal of each algorithm is to maximize some
scoring function, there is no practical method that theoretically guarantees score maximization. A
practical algorithm with solid convergence properties would be useful for the refinement of protein
folding maps, and for the development of new scores designed to be correlated with functional
similarity.

Results: In this work, the maximization of scoring functions in protein alignment is interpreted as
a Low Order Value Optimization (LOVO) problem. The new interpretation provides a framework
for the development of algorithms based on well established methods of continuous optimization.
The resulting algorithms are convergent and increase the scoring functions at every iteration. The
solutions obtained are critical points of the scoring functions. Two algorithms are introduced: One
is based on the maximization of the scoring function with Dynamic Programming followed by the
continuous maximization of the same score, with respect to the protein position, using a smooth
Newtonian method. The second algorithm replaces the Dynamic Programming step by a fast
procedure for computing the correspondence between Cα atoms. The algorithms are shown to
be very effective for the maximization of the STRUCTAL score.

Conclusion: The interpretation of protein alignment as a LOVO problem provides a new
theoretical framework for the development of convergent protein alignment algorithms. These
algorithms are shown to be very reliable for the maximization of the STRUCTAL score, and other
distance-dependent scores may be optimized with same strategy. The improved score optimization
provided by these algorithms provide means for the refinement of protein fold maps and also for
the development of scores designed to match biological function. The LOVO strategy may be also
used for more general structural superposition problems such as flexible or non-sequential
alignments. The package is available on-line at http://www.ime.unicamp.br/~martinez/lovoalign.
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Background
The number of protein structures obtained experimentally
becomes larger every year. This large database is the source
of data for the study of important problems in structural
biology: The classification of protein structures according
to their function, and the correlation of sequence and
structure. Studies on the classification of proteins availa-
ble in the Protein Data Bank (PDB) [1] have already pro-
vided important insights into the nature of protein
evolution and folding [2-4]. With the increase in compu-
ter power and the expansion of the database, using this
information for protein design and for the characteriza-
tion of the protein folding landscape (or fold space) is
becoming possible [5,6].

Reliable methods for assessing similarities or discrepan-
cies between structures are thus required. Algorithmic reli-
ability is now most important since the description of the
fold space is changing from a discrete to a continuous rep-
resentation of similarities in terms of geometrical meas-
ures [6]. It is not clear whether these measures are
meaningful if obtained by methods that do not necessar-
ily converge. Furthermore, in protein folding it was recog-
nized that the stable folds are minimizers in complex
energy landscapes [7]. If one intends to obtain insights
into the landscape of protein folding from similarity
measures (scores), these measures must be meaningful.
This means that relevant scores must be developed
[4,6,8,9], and that the algorithms that perform the align-
ment must converge to score maximizers (ideally the glo-
bal maximizers).

Studies on the organization of the protein fold universe
employ multidimensional scaling [10-12] or Kernel
methods [13]. From scores that measure the similarity
between pairs of proteins, distance-like functions are
derived, and proteins are represented as points in the 3D-
Euclidean space that best fit the distances. The Structure
Space Map developed in [11,12] provides good predic-
tions of function similarities in many cases. Pairwise
scores, which are the essential ingredients to compute dis-
tances, are given by alignment algorithms. The score infor-
mation may be "crude, noisy, incomplete or inconsistent"
[13]. In particular, scores related to very dissimilar pro-
teins are usually badly computed. Obviously, poor scor-
ing information is not an advantage for the mapping
project and alignment methods that give reliable similar-
ity measures, even for very different proteins, should be
preferred. In this sense, if we define a score as the best pos-
sible association between substructures of two proteins,
the best way to proceed is to compute the global maxi-
mum of the association measures with respect to relative
positions. This is the philosophy of the algorithm by
Kolodny and Linial [4] which, on the other hand, is unac-
ceptably expensive for the present computer facilities.

Therefore, as currently done in Optimization, we must
turn to algorithms that very likely compute global maxi-
mizers and are guaranteed to compute critical points
(points that satisfy sharp necessary conditions for maxi-
mality).

Summing up, algorithms for protein structural compari-
sons that provide theoretical tools for a more profound
analysis of the relationships between sequence, folding,
and structure must have some desirable properties: They
must converge, in the sense that a solution must always be
encountered, and the solutions must have known proper-
ties in terms of the similarity function being considered.
The algorithm must also be versatile (adaptable for the
optimization of diverse merit functions) since the study of
the correlations between structural similarity and func-
tionality may require specific similarity measures. Further-
more, a good method must be competitive with current
algorithms in terms of computer time.

Structural alignment algorithms
Algorithms for protein alignment usually fall into two cat-
egories: A large group is based on the comparison of rela-
tive internal coordinates of the proteins [2,3,14-17]
whereas the second class relies on the explicit superposi-
tion of the two structures [18-22]. Structural alignment
methods are also affected by the measure of similarity
being adopted [17]. The more straightforward compari-
son tool is the Root Mean Square Deviation (RMSD), but
RMSD is not a measure of similarity by itself, since it must
be accompanied by the number of Cα atoms of each struc-
ture being aligned and is not sensitive to the presence of
gaps [23]. Scores that take into account the presence of
gaps and automatically incorporate the number of Cα
atoms being compared have been developed [23]. Algo-
rithms for the maximization of such scores or for the min-
imization of the RMSD under some conditions use
different levels of information on the structure of the pro-
teins: From internal distances only, to secondary struc-
tures [14,21]. The comparison of the performance of these
methods is not trivial, since each one is based on a differ-
ent score and the packages often do not provide clearly
comparable outputs. However, a comprehensive evalua-
tion of several of these methods was recently elaborated
and the results obtained suggest that the STRUCTAL algo-
rithm (see below) provides the best alignments to date
[19,23]. These results indicate that the search of the max-
imizer of distance-dependent additive scores is a valuable
strategy for obtaining meaningful alignments. All these
algorithms are, however, heuristic in the sense that a rig-
orous characterization of the solutions that they find is
not provided, and the relation of such solutions and score
maximizers is uncertain.
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Convergent algorithms for protein alignment
Kolodny and Linial [4] introduced a method for solving
the Protein Alignment problem whose complexity is pol-
ynomial in the number of Cα atoms. The idea is to use an
exhaustive ε-grid search in the space of rotations and to
exploit the polynomiality of the Dynamic Programming
procedure to optimize a score function. They also illus-
trate their approach by the maximization of the STRUC-
TAL score, but other scores could be maximized with the
same strategy. If one could define a clearly biologically
meaningful similarity measure, this algorithm would pro-
vide the optimal alignment for any pair of proteins.

The method of Kolodny and Linial obtains the global solu-
tion (up to a precision ε > 0) of the Alignment problem at
the expense of an unaffordable computational effort.
Therefore, as mentioned in [4], this method is not practi-
cal with the present computer facilities, although it sheds
light on the complexity of the problem. This is a very com-
mon situation in Optimization practice. Methods that
converge to global optimizers can be defined but practical
methods are based on local optimization principles.

An algorithm is said to be convergent if it finds stationary
points of the objective function, independently of the ini-
tial approximation (this property is called global conver-
gence in the Numerical Optimization field [27,28]). We
will show that the interpretation of the protein alignment
problem in the context of Low Order Value Optimization
Theory [29,30] suggests how convergent algorithms can
be formulated. Moreover, we will describe how the
STRUCTAL algorithm can be modified in order to obtain
convergence. Then, we will introduce a new strategy for
obtaining the correspondence between the Cα atoms of
the proteins that provide the algorithms with high effi-
ciency while maintaining good score maximization and
allows for non-sequential alignments. Numerical experi-
ments will be presented that demonstrate that the meth-
ods are also competitive in terms of computer time with
state of the art algorithms. Remarks and perspectives are
given in the Conclusions. The Methods section contains
details of the implementation of the line-search Newto-
nian algorithm proposed and rigorous convergence
proofs.

Results and Discussion
General methodological principles
In this section we describe the Low Order Value Optimi-
zation problem. We explain the way in which structural
alignment can be interpreted as a LOVO problem, and we
show how this interpretation naturally suggests robust
convergent algorithms for protein alignment.

Protein Alignment as a Low Order Value Optimization Problem
Given f1(x), ..., fm(x) a finite set of real functions, the Low
Order Value Optimization (LOVO) problem consists of
finding x such that the maximum of f1(x), ..., fm(x) is max-
imal. That is, defining f(x) = max{f1(x), ..., fm(x)} the
objective of LOVO is to maximize f (x). The application of
LOVO to more general problems, an equivalent formula-
tion in terms of minimization and suitable definitions of
criticality [31,32] are given in [29]. General algorithms of
Newtonian type that globally converge to stationary
points were defined in [29] and applied to several practi-
cal problems. The main ideas of how convergence is
obtained with the application of LOVO methods to pro-
tein alignment will be given below. Theoretical details
and convergence proofs can be found in [29,30].

In Structural Alignment one wishes to obtain the best
three-dimensional superposition of two sets of points
(atoms). This assumes that there is a correspondence
between the atoms of one structure and the atoms of the
second structure. Given the correspondence, the structural
alignment is usually obtained by the minimization of the
RMSD of corresponding Cα atoms, by rotating and trans-
lating one of the structures. Therefore, each correspondence
defines a function (the RMSD or some other scoring func-
tion) of the translations and rotations, as represented
schematically in Figure 1(a). Since the number of possible
correspondences is finite, the functions of the rigid-body
transformations also form a finite set. In theory, one could
maximize the scoring function for each correspondence
independently, and the correspondence with maximal
score value would be the best alignment between the two
structures. Therefore, as in the LOVO theory, in structural
alignment one wishes to obtain the optimal value of a
finite set of real smooth functions (one for each corre-
spondence) [30]. The objective function to be maximized
assumes the value of the fi that has the optimal value for
each point of the domain, as represented in Figure 1(b).

The STRUCTAL algorithm
STRUCTAL [19] was recently reported as being a quite suc-
cessful algorithm in terms of the quality of the alignments
obtained [23]. This indicates that the strategy of maximiz-
ing a score that incorporates the distance between atoms,
the aligned length and the presence of gaps is valuable for
obtaining meaningful alignments. The goal of the STRUC-
TAL method is to maximize the STRUCTAL score,

where d is the distance between corresponding Cα atoms
and ng is the number of gaps in the sequence alignment.
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The apparent success the STRUCTAL method probably
comes from the fact that it is based on two strong ideas
that are incorporated in several state-of-the-art alignment
algorithms: 1) For a given spatial orientation of the two
structures, the correspondence that globally maximizes a
distance-dependent score can be obtained using Dynamic
Programming [24]; and 2) For a given correspondence, a
rigid-body transformation that globally minimizes the
RMSD can be obtained analytically (this problem is
known as the Procrustes problem, and here we will call
"Procrustes" the process of obtaining the rigid-body
superposition that minimizes the RMSD between corre-
sponding Cα atoms of two proteins) [25,26]. The STRUC-
TAL algorithm consists in the iterative application of these
two methods: For the current spatial orientation of the
proteins, a correspondence is obtained using Dynamic
Programming, and this correspondence is used for a best
rigid-body superposition (using Procrustes) in order to
obtain a new relative spatial orientation of the structures.
The goal of the STRUCTAL algorithm is to maximize the
STRUCTAL score.

From the point of view of score maximization given a spa-
tial orientation, the use of Dynamic Programming is quite
effective and theoretically justified, since this procedure
obtains the bijection that globally maximizes the score
itself [24]. However, obtaining the rigid-body transforma-
tion that minimizes the RMSD for the current bijection
between Cα atoms is not a score-maximizing strategy.
Therefore, although this procedure seems to be adequate
because alignments with low RMSD are desirable, it is not
the best choice if one wants to maximize the scoring func-
tion. In particular, the algorithm usually does not con-
verge to a maximizer of the score, and many times
oscillates between two different alignments.

Convergent LOVO algorithms for protein alignment
Figures 1(a) and 1(b) show how the objective function of
protein alignment can be interpreted as the maximal func-
tion of rotations-translations corresponding to each
admissible correspondence between Cα atoms of the two
structures.

Protein alignment as a Low Order Value Optimization problemFigure 1
Protein alignment as a Low Order Value Optimization problem. (a) For each correspondence between Cα atoms of proteins A 
and B, there is a smooth score that depends on the rotations and translations of the proteins. (b) In protein alignment, the 
objective function is the function that assumes the maximum value among all the possible score functions. (c) An algorithm that 
converges to maximizers must have two main steps: A step (A) that recognizes the best correspondence and a step (B) that 
maximizes the score given the correspondence. Note that at point C the objective function is non-smooth.
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A convergent method for maximizing this function must
have two abilities, as sketched in Figure 1(c):

1. For a given displacement (rotation-translation, giving a
three-dimensional relative orientation between the two
proteins), a suitable subalgorithm must be able to identify
which is the correspondence that maximizes the score.
This corresponds to steps of type A in Figure 1(c).

2. Once the best correspondence is found, another subal-
gorithm must be able to obtain a new rotation-translation
displacement that improves the score for the correspond-
ence obtained by the step of Type A. These are the steps of
type B in Figure 1(c).

In the context of protein alignment, steps of type A may be
performed using the classical Dynamic Programming
algorithm [24]. Unfortunately, Procrustes rigid-body
superpositions do not satisfy the conditions required for
the steps of type B, since they do not guarantee the
improvement of the score. However, reliable optimiza-
tion algorithms exist that are always able to obtain
improvements of the score merit function. Therefore, a
natural approach consists of replacing Procrustes by an
iteration of one of these algorithms. This is the principle
governing the methods proposed here. Interestingly, note
that point C in Figure 1(c) is non-smooth because two
correspondences provide the same score for the given
rotation-translation. As justified by the LOVO theory,
however, the non-smoothness of the objective function
may be simply ignored: A smooth optimization algorithm
that takes any of the concurrent gradients may be used for
improving the merit function at each iteration [29,30].

Algorithms
The Low Order Value Optimization approach suggests
that, for obtaining a convergent score optimization algo-
rithm, one should replace the Procrustes best rigid-body
transformation by some algorithm that guarantees
increasing the score during the structural alignment step.
Here, we propose a classical Safeguarded Line-Search
Newtonian algorithm, leading to the Dynamic-Program-
ming-Line-Search method. Next, motivated by the rather
high computational cost of the Dynamic-Programming
step, we propose a second LOVO algorithm that preserves
the Line-Search step but uses a Non-Bijective correspond-
ence that can be computed very fast. This will be the Non-
Bijective-Line-Search method, which will allow also for
the study of non-sequential alignments. Both algorithms
converge to stationary points of the scores, in the sense
defined above.

Dynamic-Programming-Line-Search method (DP-LS)
The DP-LS method preserves the Dynamic-Programming
step. However, it uses a Safeguarded Line Search Newto-

nian method that guarantees a sufficient increase of the
score during the structural alignment step [28].

Safeguarded Line Search Newtonian step
The basic computations underlying Line Search Newto-
nian algorithms are the following:

1. Obtain a strictly concave quadratic approximation of
the objective function at the current point.

2. Maximize this quadratic approximation. The maxi-
mizer of the quadratic model is called (first) trial point, as
shown in Figure 2(a).

3. If the true objective function increased enough at the
trial point, then the trial point is accepted as the new iter-
ate.

4. If the objective function did not increase enough, a new
point is obtained in the segment determined by the cur-
rent point and the trial point using safeguarded quadratic
interpolation. This step is represented in Figure 2(b). In
this way one obtains a new trial point and the control
returns to Step 3.

The quadratic approximation uses the Hessian matrix,
modified in such a way that the model is strictly concave.
This guarantees that an ascent direction is generated at
every iteration and that the objective function increases
sufficiently at every iteration. As a consequence of suffi-
cient increase, every limit point generated by the method
is stationary and, under reasonable conditions, the local
convergence rate is quadratic.

The reasons why this algorithm converges to a critical
point of the objective function are the following: The
quadratic model is a good approximation of the true
objective function at the current point, since it has the
same first and second derivatives than the objective func-
tion, as shown in Figure 2(c). Furthermore, the model is
concave, so that either the current point is a maximizer of
the quadratic model or there is a direction along which
the model (and the objective function) must increase. The
first trial point is obtained by the maximization of the
quadratic model, but it may not increase the function
value, as represented in Figure 2(c). If the function value
is not increased, a new trial point is obtained, closer to the
current point, along the line connecting the current point
and the first trial point. Since the parabola that represents
the quadratic model along this line is concave, any point
in this line must have a greater value for the quadratic
model. Furthermore, since the model is a good represen-
tation of the true objective function in the vicinity of the
current point, for a trial point close enough to the current
point, the true objective function must also increase. The
Page 5 of 15
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strategy of reducing the distance between the current and
the trial point guarantees that, eventually, the function
value will be improved, and the method must converge to
a critical point (see Methods).

DP-LS algorithm
Eeach iteration of the DP-LS algorithm is, therefore,
defined by the following three steps:

1. Given the three-dimensional orientation, compute the
bijection that maximizes the score using Dynamic Pro-
gramming.

2. Given the current bijection, perform a single Safe-
guarded Line Search Newtonian iteration to obtain a new
orientation for the second protein that guarantees a
greater score for the current bijection.

3. If the score increased more than a given tolerance, go to
step 1. Otherwise stop.

DP-LS deals with the same objective function at the two
phases of the algorithm, in contrast with STRUCTAL, that
maximizes the score in the first phase and minimizes the
RMSD in the second one. For this reason, we expect that
the convergence to score maximizers should be more
robust in DP-LS than in the STRUCTAL algorithm. Their
computational cost must be similar, since both use the DP
step, and the cost of performing a Newtonian iteration is
similar to the cost of a Procrustes best rigid-body superpo-
sition.

Non-Bijective-Line-Search method (NB-LS)
Motivated by the fact that Dynamic Programming is com-
putationally expensive, we define here a new correspond-

Sketch of the line-search Newtonian methodFigure 2
Sketch of the line-search Newtonian method. (a) A quadratic model is obtained and maximized in the first step. (b) If the func-
tion value has not increased (enough) a new trail point is obtained closer to the current point. (c) For a trial point close enough 
to the current point, the objective function must increase.
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ence that sacrifices some of the requirements of a good
correspondence but that may be computed much more
rapidly. Moreover, this procedure makes it possible the
generalization of the methods presented here for prob-
lems that do not require the correspondence to be mono-
tone and sequential. The NB-LS method can be used for
the structural superposition of other structures than pro-
teins, such as ligands.

The Dynamic-Programming step was designed to globally
maximize the score for a bijective and monotone corre-
spondence. Both properties are reasonable from the point
of view of protein alignment, since the Cα atoms of each
protein are ordered along the protein chain.

We propose now a new (Non-Bijective) correspondence,
that sacrifices both bijectivity and monotonicity, but is
very cheap to compute: For each Cα atom of the first protein,
the Cα atom corresponding to it is the closest Cα atom of the
second protein. Clearly, this correspondence violates both
the bijective and monotone characteristics of the DP cor-
respondence, since different Cα atoms of the first protein
may be associated to the same Cα atom of the second pro-
tein. This correspondence has the somewhat undesirable
property that it is not symmetric relative to the inter-
change of the two proteins. Here we consider systemati-
cally the first structure as the smallest one because, as will
be shown bellow, this is favorable for obtaining the corre-
spondence rapidly.

This correspondence globally maximizes any score that
increases monotonically as the distance between atoms
decreases. The STRUCTAL score is one of the many scores
that satisfy this property. Therefore, the use of this corre-
spondence associated with the Line-Search Newtonian
method also results in a convergent LOVO algorithm,
although the functions fi are defined in a different way.
The advantage of the non-bijective correspondence is that
it may be computed very rapidly, as will be shown below.

Fast algorithm for obtaining the NB-correspondence
Our fast algorithm for computing the NB-correspondence
involves a preparatory step and an actual algorithmic step.
The preparatory step consists in:

1. Obtain the internal distance-matrix of one (usually the
largest) protein (called protein B).

2. Sort the elements of each column of the internal dis-
tance-matrix. Therefore, the ordered internal distance-
matrix will contain, for each Cα atom of protein B, the dis-
tances to other Cα atoms of the same protein in increasing
order.

Given the ordered internal distance matrix for protein B,
one can compute the atom of B being the closest to each
atom of A using the following procedure:

1. Compute the distance d1 of the first atom of A (1A) to
some atom of B (for example, to atom 1B), as shown in
Figure 3(a).

2. Since we seek the atom of B that is closest to atom 1A,
this atom of B cannot be farther than the atom 1B. There-
fore, it necessarily belongs to the sphere of radius d1
around atom 1A, as shown in Figure 3(a).

3. As shown in Figure 3(b), the condition above implies
that the atom of B closest to 1A is in the sphere of radius
2d1 around atom 1B.

4. Therefore, one needs to compute the distances of the
Cα atom 1A only to those atoms of B that are closer than
2d1 to atom 1B. We know which are these atoms because
we have the ordered internal distance matrix of B.

Obtaining the fast non-bijective correspondence: The Cα atom corresponding to each Cα atom of protein A is the nearest Cα atom in protein BFigure 3
Obtaining the fast non-bijective correspondence: The Cα 
atom corresponding to each Cα atom of protein A is the 
nearest Cα atom in protein B. (a) Given the distance d1 
between Cα atoms 1A and 1B, (b) the Cα atom of B nearest 
to 1A is necessarily in the sphere of radius 2d1 centered in 
1B. With an ordered distance matrix for B, only a few dis-
tances need to be computed in practice.
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In practice, the first distance computed may be to some
atom already known to be close to 1A according to previ-
ous iterations. For the second atom of A, the first distance
computed may be to the atom which was found to be clos-
est to the first atom of A, and so on. These procedures
maintain the initial distances d1 small, keeping also small
the number of distances that have to be computed for
each atom of A. We observe that the number of distances
computed for each atom of the first protein is of the order
of 10, almost independently of the size of the protein B.

Using this algorithm for a single protein-protein compar-
ison might not result in time savings due to the cost of the
preparatory step. However, when performing database
comparisons, the time savings are large because the pre-
paratory steps may be performed in a rational way: For a
comparison of a single protein to a database of structures,
the ordered internal distance matrix may be computed
only for that single protein, which is then systematically
treated as protein B. For all-on-all protein comparisons,
one computes the ordered distance matrix for the largest
protein, treats it as protein B, and aligns it to the whole
database. Then we move to the second largest protein,
repeat the operation, and so on. Only a single preparatory
step is performed for each protein. The computation of
the ordered distance matrices was observed to take only
about 4% of the total alignment time.

Testing
The theoretical reasons why the methods presented here
should be robust and fast for score maximization were
presented in the previous sections. Now we discuss how
these methods behave in practice and whether the theo-
retical expectations were fulfilled.

Our comparison involves the alignment of 79,800 protein
pairs (see the Implementation section for details). For
each problem, our first comparison is based on which of
the three methods (STRUCTAL, DP-LS or NB-LS) was able
to obtain the best score up to relative precision of 10-3.
Considering all the alignments, the best scores are
obtained in about 50% of the cases by the DP-LS method,
in 45% of the cases by the STRUCTAL algorithm and in
only about 7% of the cases by the NB-LS method. How-
ever, most alignments in a database are not meaningful
and, therefore, the capacity of the method in identifying
good alignments is more important. Therefore, the per-
centage of best-scores obtained by each method were clas-
sified in terms of the best score obtained by the three
methods, resulting in Figure 4(a). In this comparison, the
STRUCTAL scores are scaled by the number of atoms of
the smallest protein involved in each alignment: The
STRUCTAL score for a perfect alignment with no gaps is
20nA, where nA is the number of atoms of the smallest pro-
tein involved. Therefore, scaling the scores allows one to

compare alignments containing proteins with different
number of atoms. Scaled scores are always between 0 and
20.

The first clear observation is that DP-LS is systematically
able to obtain the best scores in the highest percentage of
cases for all alignment qualities. For alignments with
(scaled) best-scores greater than 6, for example, DP-LS
obtains the best scores in at least 90% of the cases. For
alignments with best scores greater than 12, DP-LS
obtains the best scores in 98% of the problems. The
STRUCTAL algorithm is competitive with DP-LS for bad
alignments (scores smaller than 3) and for very good
alignments (scores greater than 18).

The NB-LS method obtains the best scores only in about
7% of the cases in general (best-scores greater than zero).
However, as the overall quality of the scores increases, the
algorithm linearly improves its winning percentage,
obtaining the best scores for 90% of the cases for scores
greater than 13 and for 98% of the cases for scores greater
than 15. In terms of this evaluation, this algorithm
obtains better results than STRUCTAL for all scores greater
than 4.

Figure 4(a) suggests that DP-LS and NB-LS are very effec-
tive for STRUCTAL score maximization. However, this fig-
ure does not give a measure of the difference between the
scores obtained by each method, providing only a partial
image of the actual results. Figure 4(b) is a plot of the aver-
age value of the scores obtained by each method relatively
to the best scores obtained. Again, the best results are
obtained systematically by the DP-LS algorithm, followed
by the STRUCTAL algorithm for bad alignments and by
the NB-LS algorithm for alignments with best-scores
greater than 13.

Figure 4(b) depicts the values of the scores obtained by
each method, relatively to the best score obtained. All
algorithms obtain scores that are greater than 90% of the
best score obtained for problems with best scores greater
than 8. For alignments with best scores greater than 14,
the STRUCTAL method obtains scores about 1 to 2%
smaller than the other methods. This illustrates the effect
of using a reliable local convergence strategy on the over-
all alignment qualities.

These results are as expected in view of the theoretical pre-
dictions: The DP-LS algorithm systematically obtains the
best results, since it contains only monotone score maxi-
mization steps. The best scores obtained by this algorithm
are mostly related to the fast local convergence of the LS
algorithm. For bad alignments this difference is not as
important as it is for good alignments. The NB-LS also
behaves as expected: It does not penalize gaps or forces
Page 8 of 15
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monotonicity during optimization, therefore it is not
effective for obtaining good scores for alignments which
do not naturally satisfy monotone-bijection and few-gaps
properties. However, as the overall alignment quality is
improved, these properties are automatically satisfied,
and the deleterious effect of the non-bijective correspond-
ence is reduced. For alignments with best scores greater
than 13 the sacrifice of the bijection is not as important as
the improvement provided by the LS step, and the results
are better than the ones obtained by STRUCTAL.

Table 1 shows the average time per alignment in the all-
on-all comparisons, obtained for each method. As
expected, the NB-LS method is faster than the other two
methods, since it replaces the Dynamic-Programming
step by a fast algorithm for obtaining the correspondence.
It is four times faster than the DP-LS method and six times
faster than STRUCTAL. The 79,800 comparisons were per-
formed in 4.6 hours by STRUCTAL, 2.9 hours by DP-LS an
in only 44 minutes by the NB-LS method. These relative
times were also obtained in a comparison of a single pro-
tein to the whole PDB (~34,000 structures). In this case,
the CPU time required by the NB-LS method was 19 min-
utes.

Figure 5 shows the dependence of the alignment time
with respect to the size of the proteins being aligned. In
Figure 5 we observe that the computational time required
for an alignment performed by STRUCTAL or DP-LS
increases quadratically as the number of atoms of the
smallest protein being compared increases. On the other
hand, the complexity of the NB-LS algorithm seems to be
almost linear as a function of the number of atoms. Con-
sidering only the comparison of the smaller proteins, in
the inset of Figure 5, we observe that NB-LS is also quad-
ratic, albeit with a smaller second-order coefficient. The
difference in the average time between STRUCTAL and
DP-LS is mainly due to the fact that the number of itera-
tions performed by STRUCTAL increases when the size of
the proteins being aligned increases (not shown), while
the DP-LS obtains convergence in about 10 iterations
independently of the size of the proteins being compared.
Both the fast local convergence and the non-bijective cor-
respondence provide effective ways to improve the speed
of the algorithms. For example, the SSM algorithm [21],
which uses secondary structure information, was reported
to be about 3 times faster than STRUCTAL, being DP-LS
and NB-LS competitive with state of the art algorithms in
terms of computer time.

Implementation
In this section we provide technical details that should be
useful to replicate algorithms and experiments.

Line search
At steps of type B of the algorithms proposed here we used
a single line-search procedure. One could perform the full
optimization of the score given the current bijection using
the LS algorithm until convergence is achieved. However,
this is not worthwhile, since after a single movement of
the proteins, the bijection that maximizes the score for the
new orientation of the proteins frequently changes. There-
fore, for every new three-dimensional orientation of the
proteins, it is reasonable to recompute the bijection.

Also some safeguards must be taken into account in order
to guarantee that the line-search Newtonian method con-
verges. For instance, the current-trial point distances must
not be reduced abruptly. Moreover, the increase of objec-
tive function value must be at least a fraction of the
increase predicted by the quadratic model at the accepted
point. The details on how the line-search must be imple-
mented in order to obtain practical and theoretical con-
vergence can be found, for example, in [28] for smooth
optimization and in [30] for the (non-smooth) structural
alignment problem. More details of the current imple-

Average time required for the alignment as a function of the size of the smallest proteinFigure 5
Average time required for the alignment as a function of the 
size of the smallest protein.

Table 1: Average time per alignment of the three methods

Method Average time per alignment/s

STRUCTAL 0.209
DP-LS 0.133
NB-LS 0.033
Page 10 of 15
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mentation and convergence proofs can be found in the
Methods section.

Initial approximations
The initial points for the alignments were obtained using
an approximate alignment based on the internal coordi-
nates of the proteins: For each protein with N atoms, a set
of N - 3 points in R3 are defined by the distances of atom
i to atoms i + 2, i + 3, and the distance between i + 2 and
i + 3, for N consecutive indices i. These are the three dis-
tances that determine the dihedral of the atoms that fol-
low atom i. This creates a "pseudostructure" with N - 3
atoms for each protein. The correspondence between the
atoms of the pseudostructures of the two proteins is
obtained using Dynamic Programming to maximize a
STRUCTAL-like score (in which the distances are multi-
plied by a factor, in our case 20, for providing a reasonable
scaling relative to the score parameters). The superposi-
tion that minimizes the RMSD for this bijection is
obtained using Procrustes and this orientation of the pro-
teins was defined as the initial point for the alignments.
This algorithm was observed to directly provide the solu-
tion for the alignment of very similar proteins. Further-
more, this method provides good approximations for all
algorithms, in such a way that even the classical circularly
permuted pair 2pel:A-5cna:A [34] was correctly aligned
with all the methods reported here.

For comparing the alignment obtained by the NB-LS
method relative to STRUCTAL and NB-LS we compute, as
a post-processing step, the actual bijective and monotone
STRUCTAL scores relative to the (DP) optimal monotone
bijection, for the final alignment obtained.

Numerical examples
We selected, at random, 20 proteins from the publicly
available DALI alignments [3]. For each of these 20 pro-
teins, the 20 best matches found by DALI were also
included in our data set. Therefore our database contained
400 proteins, including similar proteins (since they were
obtained from a DALI classification) as well as structurally
non-correlated proteins. All-on-all alignments within this
set of proteins were performed with the three methods,
comprising 79,800 alignments for each algorithm. The list
of the 400 proteins used can be obtained at the web site of
LovoAlign. For sorting the distances during the calcula-
tion of the ordered internal distance matrices for the NB-
LS method we used the Flashsort algorithm [33]. The
methods are implemented in Fortran77. The tests were
run on an AMD Opteron 242 with 1 Gb of RAM running
Linux. The software was compiled with the GNU fortran
compiler version 3.3 with the "-O3 -3ast-math" options.

Conclusion
Here we presented two contributions, one theoretical, and
other practical, to the problem of structural alignment.
The theoretical contribution is the interpretation of the
alignment problem as a Low Order Value Optimization
problem, a framework under which convergent algo-
rithms can be developed. Furthermore, the solutions
obtained are critical points of the scoring function. This
means that the solutions obtained by our algorithms
admit a precise mathematical description in terms of nec-
essary conditions for score maximality.

From the point of view of practical computation, the algo-
rithms presented here seem to be very successful: The
study [23] seems to indicate that the STRUCTAL method
is a quite robust algorithm for protein alignment. The
present paper improves the STRUCTAL algorithm in the
following senses:

1. The STRUCTAL algorithm iteration has two phases:
Maximizing the STRUCTAL score for fixed positions
(Dynamic Programming) and modifying the relative posi-
tions with RMSD minimization (Procrustes). These two
objectives might be conflictive leading to oscillation. Our
DP-LS modifi-cation improves the score at both phases.
Therefore, the score increases monotonically at all the iter-
ations.

2. One of the theoretical consequences of the monotone
behavior of DP-LS is that this algorithm enjoys conver-
gence to stationary points independently of the initial
approximation.

3. The first phase of the STRUCTAL algorithm and DP-LS
uses Dynamic Programming. With the aim of reducing the
cost of this procedure we introduced a nonbijective corre-
spondence at the first phase of the iterations. The nonbi-
jective association is computationally very cheap.

4. As expected, NB-LS is faster than the algorithms based
on first-phase Dynamic Programming. Perhaps surpris-
ingly, for medium to good alignments, its robustness is
similar to the one of the STRUCTAL algorithm and DP-LS.
The reason is that meaningful alignments usually satisfy
the bijective and monotone properties for the best corre-
spondence without being necessary to force them at every
step of the optimization procedure.

In this paper, we do not address the problem of whether
the STRUCTAL score is the best merit function for the eval-
uation of the biological relevance. The functional rele-
vance of the alignments obtained here is intrinsically
linked to the functional relevance of the score being max-
imized. An ideal score would be one that increases as
functional similarity increases. Although several scores
Page 11 of 15
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have been proposed [8,9,23,34], the design of a score that
maximizes biological relevance is still an open problem.
This occurs, in part, because reliable practical methods for
score optimization were unavailable. The algorithms pre-
sented here should be effective tools for the maximization
of any distance-dependent score. Therefore, these meth-
ods may be used for the development of new scores
designed to be functionally meaningful.

The approaches described here can be employed for more
general structural alignment problems. The substitution
of the Procrustes procedure by the Newtonian algorithm
can be used to introduce internal transformations (as flex-
ibility) in the proteins being aligned. On the other hand,
the replacement of the Dynamic-Programming strategy by
the NB-correspondence makes it possible the treatment of
structural alignment problems where monotonicity does
not hold. These possibilities were theoretically investi-
gated, and succesfully tested, in a previous work [30], but
an effective implementation of these methods including
flexibility or other transformation on the structures is an
area of future research.

Methods
Here we give a detailed description of the Newtonian
algorithm used in DP-LS and NB-LS and rigorous conver-
gence proofs. More detailed descriptions of the algorithms
and of the theory involved can be found in [30]. Although
the original problem is given in terms of maximization
the maximum of a set of functions, here we use the "min-
imization of the minimum" approach, which is trivially
equivalent. Therefore, our problem may be formulated in
the following way.

Minimize fmin(x)

where

fmin(x) = min{f1(x), ..., fm(x)}.

we denote Imin (x) = {i ∈ {1, ..., m} | fi (x) = fmin(x)}. we

denote .

Algorithm A1. Let θ ∈ (0, 1), α ∈ (0, 1/2), β > 0, be algo-

rithmic parameters. Let x0 ∈ n be the initial approxima-

tion. Given xk ∈ n, the steps for computing xk+1 are:

Step 1. Choose ν(k) ∈ Imin(xk). If ||∇fν(k)(xk)|| = 0, termi-
nate.

Step 2. Compute dk ∈ n such that

∇fν(k)(xk)Tdk ≤ -θ||dk|| ||∇fν(k)(xk)|| (2)

and

||dk|| ≥ β||∇fν(k)(xk)||. (3)

In the Newtonian version of the algorithm we choose

d = - (∇2fν(k)(xk) + λI)-1∇fν(k)(xk), (4)

where λ is the first number in the sequence {0,0.1||∇
2fν(k)(xk)||,0.2||∇2fν(k)(xk)||,...} that verifies (2).

The choice (4) corresponds to take d =  - xk where  is

the minimizer of a quadratic approximation q(x) of
fν(k)(x). Namely,

If λ = 0 (which is the usual case) this is the ordinary Taylor

approximation of fν(k). Sometimes it is necessary to take λ
> 0 in order to guarantee that a minimum of the quadratic
exists and that the generated direction is a descent direc-
tion (2). In this case, the geometrical meaning of d is that

d =  - xk, where  minimizes the Taylor quadratic

approximation in a restricted trust ball [35].

If d satisfies (3) we take dk = d. Otherwise, we take dk = βdk/
||dk||. In the Newtonian implementation of the algorithm,
we use θ = 10-4, β = 10-6.

Step 3. In this step, we aim to compute tk > 0, xk+1 ∈ n,

such that

fmin(xk+1) ≤ fmin(xk) + αtk∇fν(k)(xk)Tdk. (5)

We proceed as follows:

1. t ← 1;

2. Suffcient Descent Test. If t satisfies

fmin(xk+1) ≤ fmin(xk) + αt∇fν(k)(xk)Tdk (6)

take tk = t, xk+1 = xk + tkdk and finish Step 3.

3. If t does not satisfy (6) compute  as:
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(If the denominator of the expression above vanishes, we

take  = 0.5.)

With the choice (7),  is the minimizer of the one-dimen-

sional quadratic (parabola) φ that interpolates fmin at xk

and xk + tdk along the direction dk. By this we mean that

φ(0) = fmin(xk), φ'(0) = ∇fν(k)(xk)Tdk, φ(t) = fmin(xk + tdk).

If  > t/2 we take t ← t/2. If  <t/10 we take t ← t/10. Oth-

erwise, take t ← . (This procedure is known as safe-

guarded quadratic interpolation [27].) Go to Suffcient
Descent Test.

We say that x* is a critical (or stationary) point if ∇fi(x) =
0 for some i ∈ Imin(x). Critical points are Clarke Stationary
points in the sense used in [31], for example.

In the following theorems we prove that the algorithm
stops at xk only if xk is critical and that limit points of
sequences generated by Algorithm A1 are critical. These
proofs are adaptations of the ones displayed in [29] in a
more general setting.

Theorem 1. Algorithm A1 is well-defined and terminates at xk
only if xk is critical.

Proof. Assume that xk is not critical and define i = ν(k). So,
∇fi(xk) ≠ 0. By (2) and the differentiability of fi,

Then,

Since α < 1, for t small enough we have:

Since ∇fi(xk)Tdk < 0, we deduce:

fi(xk + tdk) ≤ fi(xk) + αt∇fi(xk)Tdk.

But fmin(xk + tdk) ≤ fi(xk + tdk) and fmin(xk) = fi(xk), so:

fmin(xk + tdk) ≤ fmin(xk) + αt∇fi(xk)Tdk (8)

for t small enough.

Therefore, choosing tk as in Steps 3.1–3.3, the condition
(5) is satisfied.

This proves that, whenever xk is not critical, a point xk+1
satisfying (5) may be found, so the algorithm is well
defined.

Theorem 2 If x* is a limit point of a sequence generated by
Algorithm A1 then x* is critical. Moreover, if limk∈K xk = x* and
the same i = ν(k) ∈ Imin(xk) is chosen at Step 1 of the algorithm
for infinitely many indices k ∈ K, then i ∈ Imin(x*) and ∇fi(x*)
= 0. Finally,

Proof. Let x* ∈ n be a limit point of the sequence gener-

ated by Algorithm A1. Let K = {k0, k1, k2, k3, ...} be an infi-

nite sequence of integers such that:

1. There exists i ∈ {1, ..., m} such that i = ν(k) for all k ∈ K.

2. limk∈K xk = x*.

The sequence K and the index i necessarily exist since {1,
..., m} is finite.

By the continuity of fi,

Clearly, since i = ν(k), we have that

fi(xk) ≤ f�(xk) for all � ∈ {1, ..., m}.

for all k ∈ K.

Taking limits on both sides of this inequality, we see that
fi(x*) ≤ f�(x*) for all � ∈ {1, ..., m}. Thus,

i ∈ Imin (x*). (11)

By the definition of Algorithm A1, since kj+1 ≥ kj + 1, we
have:

for all j ∈ .

By (5), (10) and (12), we obtain:

t̂

t̂

t̂ t̂

t̂

lim
( ) ( )

( ) .
t

i k k i k
i k

T
k

f x td f x

t
f x d

→

+ −
= ∇ <

0
0

lim
( ) ( )

( )
.

t

i k k i k

i k
T

k

f x td f x

t f x d→

+ −
∇

=
0

1

f x td f x

t f x d
i k k i k

i k
T

k

( ) ( )

( )
.

+ −
∇

≥ α

lim ( ) .( )
k K

k kf x
∈

∇ =ν 0 (9)



lim ( ) ( ).
k K

i k if x f x
∈

∗= (10)

f x f x f x

f x t f x d

i k k k

k k i k
T

j j j

j j j

( ) ( ) ( )

( ) ( )

+ + +
= ≤

≤ + ∇

1 1 1min min

min α kk

k i k

j

j j
f x f x< =min( ) ( )



Page 13 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:306 http://www.biomedcentral.com/1471-2105/8/306
Therefore, by (2),

If, for some subsequence K1 ⊂ K, limk∈1 ∇fi(xk) = 0, we
deduce that ∇fi(x*) = 0 and the thesis is proved. Therefore,
we only need to analyze the possibility that ||∇fi(xk)|| is
bounded away from zero for k ∈ K. In this case, by (12),

If, for some subsequence, ||dk|| → 0, the condition (2)

also implies that ∇fi(xk) → 0 and ∇fi(x*) = 0. Thus, we only

need to consider the case in which limk∈K tk = 0. Without

loss of generality, we may assume that tk < 1 for all k ∈ K.

So, for all k ∈ K there exists  > 0 such that

Moreover, by (13),

Define sk = dk for all k ∈ K. Then, by (15),

By (14) and the Mean Value Theorem, for all k ∈ K there
exists ξk ∈ [0, 1] such that

∇fi(xk + ξksk)Tsk = fi(xk + sk) - fi(xk) > α∇fi(xk)Tsk.
(17)

Moreover, by (2),

for all k ∈ K.

Let K1 ⊂ K, s ∈ n be such that

.

By (16), dividing both sides of the inequality (17) by
||sk||, and taking limits for k ∈ K1, we obtain:

∇fi(x*)Ts ≥ α∇fi(x*)Ts.

Since α < 1 and ∇fi(xk)Tdk < 0 for all k, this implies that ∇
fi(x*)Ts = 0. Thus, taking limits in (18), we obtain that ∇
fi(x*) = 0. Therefore, by (11), x* is critical.

Finally, let us prove (9). If (9) is not true, there exists j and
an infinite set of indices k ∈ K such that j = ν(k) and ||∇
fj(xk)|| is bounded away from zero. This implies that j ∈
Imin(x*) and ||∇fj(x*)|| ≠ 0, contradicting the first part of
the proof. �

Availability and requirements
The program for performing protein structural alignments
with these methods is freely available, with source codes,
at:

http://www.ime.unicamp.br/~martinez/lovoalign

An online server for pairwise comparison is also available.
The methods are implemented in such a way that per-
forming pairwise, single-protein-to-database or all-on-all
database comparisons is straightforward.
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