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Protein alignment is a challenging applied optimization problem. Superposition methods are based on
the maximization of a score function with respect to rigid-body modifications of relative positions. The
problem of score maximization can be modelled as a continuous nonsmooth optimization problem
(low order-value optimization (LOVO)). This allows one to define practical and convergent methods
that produce monotone increases of the score. In this paper, trust-region methods are introduced for solv-
ing the problem. Numerical results are presented. Computer software related to the LOVO approach for
protein alignment is available at www.ime.unicamp.br/∼martinez/lovoalign.
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1. Introduction

Proteins are large organic compounds formed by chains ofα-amino acids bound by peptide bonds.
They are essential parts of all living organisms and participate in most cellular processes. Hormone
recognition and transport, catalysis, transcription regulation, photosynthesis, cellular respiration and
many other fundamental mechanisms of life are protein mediated. Proteins can work together to achieve
a particular function and can bind to different chemical structures to be functional (Voet & Voet, 2004).

The sequence of amino acids in a protein is defined by a gene. This sequence is known as the
‘primary structure’ of a protein. Each amino acid has particular chemical characteristics, but contributes
to the main chain of the protein with identical substructures formed by one nitrogen and two carbon
atoms. One of these carbon atoms is known as the Cα atom. Roughly speaking, the 3D coordinates of
the Cα atoms are known as the ‘tertiary structure’ of a protein. Protein structures can be determined by
experimental methods, such as X-ray crystallography or nuclear magnetic resonance. A large collection
containing atom coordinates for most of the known proteins is the Protein Data Bank (PDB) (Berman,
2000), which contains around 35000 structures. This number increases every year.
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During evolution, mutations promote changes in the primary structure of a protein by introducing
modifications in the genetic code. These mutations may persist in a population if they do not result
in impaired protein function. The functions of different proteins may be the same in spite of different
sequences of amino acids when they share the same overall 3D structure. Therefore, the ‘classification’
of 3D structures is useful to determine the function of the proteins and to provide hints on evolutionary
mechanisms.

The main ingredient of the classification procedure is a comparison (alignment) between two struc-
tures. When a new protein structure is obtained or when a protein structure is conjectured, its comparison
with the whole data bank and consequent classification is often used for functional classifications
(Holm & Sander,1993).

The degree of similarity between two proteins is usually given by a ‘score’. From this score, a
distance-like function is usually derived and the set of distances is frequently used to produce ‘structure
maps’. A structure map is a 2D or 3D representation of the whole space of proteins (Holm & Sander,
1996). In a structure map, each protein is a point and the distance between two of these points reflects
the similarity given by the score. Multidimensional scaling (Hou et al., 2005, 2003; Vendruscolo &
Dobson, 2005) and Kernel methods (Lu et al., 2005) are useful tools for building the 3D representation
that comes from the scores. The structure space map developed inHouet al.(2005, 2003) provides good
predictions of function similarities in many cases.

The primary sequence of amino acids determines the structure of a protein. Protein folding is the
molecular mechanism by which a protein achieves its tertiary structure from an unfolded sequence.
Some general aspects of protein-folding mechanisms are now being elucidated (Onuchic & Wolynes,
2004), but the prediction of structure from sequence remains one of the greatest challenges of contem-
porary biochemistry. Methods for structural modelling based on the sequence of amino acids exist and
are frequently based on sequence similarities to proteins with known structure. An evaluation of the
quality of the models requires a measure of their potential energy and of their similarity to the structural
references used (Sali & Blundell, 1993). Therefore, a score must be a reliable measure of similarity, not
only between known structures but also between potential ones.

We will see that the score that measures the similarity between two proteins may be seen as the max-
imum of a (continuous nonsmooth) function in the space of relative positions (displacements). The relia-
bility of the score depends on the accuracy with which we are able to obtain this maximum; therefore, ro-
bust and fast algorithms are necessary. Algorithms for obtaining theglobalmaximum may be defined but
are not affordable using current computer capabilities, (Kolodny & Linial, 2004). In this paper, we rely
on the mathematical characterization of the protein alignment problem given inMartinezet al. (2007)
(see alsoAndreaniet al., 2008a). Line-search algorithms that converge to first-order stationary points
were defined inMartinezet al. (2007) andAndreaniet al. (2008a). Here, we introduce a trust-region
approach (Connet al., 2000; Moré, 1983; Powell, 1970) to define second-order convergent algorithms.

This paper is organized as follows. In Section2, the protein alignment problem is formulated as a
low order-value optimization (LOVO) problem. In Section3, we define a trust-region method for solv-
ing LOVO problems and we prove convergence. In Section4, we present numerical results. Conclusions
are given in Section5.

Notation

The symbol‖ ∙ ‖ will denote the Euclidean norm.
If the symmetric matrixA is positive semidefinite, we denoteA < 0. If A is positive definite, we

denoteA� 0.
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We denoteN = {0, 1, 2, . . .}.
The Euclidean ball with centrex and radiusε is denoted byB(x, ε).

2. Formulation

Let Q = {Q1, . . . , QN} ⊂ Rnq andP = {P1, . . . , PM } ⊂ Rnp . The goal is to find a transformation
D: Rnq → Rnp such that some subset of{D(Q1), . . . , D(QN)} fits some subset ofP. In protein
alignment,D generally represents rigid-body displacements, but more general transformations can be
considered. For example, assume thatnq = 3, np = 2 andP is the set of possible ‘shadows’ of the
points inQ. In that case, one could wish to find the rigid-body displacement ofQ such that a subset
of the 2D points represented by the(x, y) coordinates of the displacedQ fits a subset ofP in the best
possible way. In that case,D would be the composition of a rigid-body movement with a projection.
A lot of examples of this general problem can be given, from tissue recognition to security systems
(Andreaniet al., 2008b). We will denote byD the set of ‘admissible transformations’.

Let C be the set of ‘admissible correspondences’ between nonempty subsets of{1, . . . , N} and
{1, . . . ,M}. (Sometimes admissible correspondences must be bijective, and sometimes monotonicity
will be required.)

Each elementΦ ∈ C is a function

Φ: A(Φ)→ B(Φ),

where A(Φ) ⊂ {1, . . . , N} and B(Φ) ⊂ {1, . . . ,M}. GivenΦ ∈ C and a transformationD, an as-
sociated scoreS(D, Φ) > 0 is assumed to be defined. This score should reflect the degree of spatial
similarity between the sets{D(Qa)}a∈A(Φ) and{Pb}b∈B(Φ).

The goal of the general alignment problem is to maximize, both with respect toΦ and with respect
to D, the scoreS(D, Φ). In other words, we wish to solve the problem

MaximizeD∈D MaximumΦ∈C S(D, Φ). (2.1)

SinceC is a finite set (say,C = {Φ1, . . . , Φm}), we may write (2.1) in the form

MaximizeD∈D Maximum{S(D, Φ1), . . . , S(D, Φm)}. (2.2)

Protein alignment is a particular case of the situation explained above. The goal is to find similarities
between two proteinsP andQ, represented by the coordinates of their Cα atoms. The similarity is mea-
sured by a score. Several scores have been proposed in the protein literature. One of them is the ‘Structal’
score (Gerstein & Levitt, 1998; Subbiahet al., 1993). The number of admissible correspondencesm is
exponential in the number of amino acids. Therefore, it is essential to possess a methodology for com-
puting the maximum in (2.1) that does not involve exhaustive enumeration. Dynamic programming (DP)
procedures (Subbiahet al., 1993) are generally used for this purpose, having a computational cost that
is quadratic in the number of Cα atoms. A different algorithm, associated with a different definition of
admissible correspondences, will also be used here to compute the maximum, being quadratic in the
worst case, but generally cheaper than DP.

Assume that the 3D coordinates of the Cα atoms of proteinP (in angstroms) areP1, . . . , PM and
the coordinates of the Cα atoms of proteinQ areQ1, . . . , QN . Under the rigid-body displacementD,
the coordinates of the displaced proteinQ are, therefore,D(Q1), . . . , D(QN). Assume thatΦ is a
monotone bijection betweenA(Φ) ⊂ {1, . . . , N} and B(Φ) ⊂ {1, . . . ,M}. (We mean thati < j ⇒
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Φ(i ) < Φ( j ).) The Structal score associated with the displacementD and the bijectionΦ is

S(D, Φ) =
∑

k∈A(Φ)

20

1+ ‖Pk − D(QΦ(k))‖2/5
− 10× gaps, (2.3)

where ‘gaps’ is the number of cases in which at least one of the following situations occur:

• Φ(k) is defined, there exists̀> k such thatΦ(`) is defined, butΦ(`+ 1) is not defined;

• Φ−1(k) is defined, there exists̀> k such thatΦ−1(`) is defined, butΦ−1(`+ 1) is not defined.

In Fig. 1, we give examples of bijective and nonbijective (NB) correspondences. The concept of gap
applies only to the bijective case. The bijection on the left has no gaps. The central bijection has two
gaps and the bijection on the right has one gap.

The alignment problem associated with the Structal score consists of findingΦ and D such that
S(D, Φ) is maximal. A global optimization procedure for achieving this objective was given in
Kolodny & Linal (2004). However, this method is not computationally affordable and, in practice, a
heuristic procedure called the Structal Method (Gerstein & Levitt, 1998; Subbiahet al., 1993) is gen-
erally used. InKolodny et al. (2005), the Structal Method was reported as the best available practical
algorithm for protein alignment. Each iteration of the Structal Method consists of two steps.

1. UpdateΦ: Given the positionsP1, . . . , PM and D(Q1), . . . , D(QN), the monotone bijectionΦ
that maximizes the score (fixingD) is computed using DP (Needleman & Wunsch, 1970).

FIG. 1. Examples of correspondences that form theΦ domain: (a) Bijective correspondences and (b) NB correspondences, valid
only for NB methods.
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2. UpdateD: Assume that the graph ofΦ is {(k1, Φ(k1)), . . . , (ks, Φ(ks))}. Then the rigid-body
displacement that minimizes

∑s
`=1

∥
∥Pk` − D(QΦ(k`))

∥
∥2 is computed.

The computation ofD at the second step of the Structal Method involves the solution of the well-
known Procrustes problem (Kabsch, 1978; Kearsley, 1989). The main drawback of the Structal Method
is that the UpdateΦ step requires the optimization of a function (the Structal score) with respect toΦ
and the UpdateD step involves the optimization of a different function (the sum of squared distances)
with respect toD. This may lead to oscillation (Martinezet al., 2007).

The Structal Method is the most efficient ‘superposition’ method for protein alignment. Superposi-
tion methods are iterative algorithms whose main iteration has two phases.

1. UpdateΦ: Given the positionsP1, . . . , PM and D(Q1), . . . , D(QN), the admissible correspon-
denceΦ that maximizesS (fixing D) is computed.

2. UpdateD: Assume that the graph ofΦ is {(k1, Φ(k1)), . . . , (ks, Φ(ks))}. Then a rigid-body dis-
placement that usually improves the score associated with this correspondence is computed.

Martinezet al.(2007) introduced two superposition methods that are guaranteed to improve the score
by means of line-search continuous optimization algorithms. Trust-region versions of these algorithms
are introduced and analyzed in the present paper.

3. LOVO algorithm

Assume thatfi : Rn→ R, i = 1, . . . ,m. Define, for allx ∈ Rn,

fmin(x) = min{ f1(x), . . . , fm(x)}.

We will consider the optimization problem

Minimize fmin(x). (3.1)

This is a LOVO problem as defined inAndreaniet al.(2008b). Let us identify the transformationD with
the set of parameters by means of whichD is defined (rotation angles and translation in the case of rigid-
body displacements). Writingx = D and fi (x) = −S(D, Φi ), we observe that (2.2) is a particular case
of (3.1). Therefore, the protein alignment problems defined in Section2 are order-value optimization
problems in the sense of (3.1). We will assume that the second derivatives offi are Lipschitz continuous
on a sufficiently large set, for alli = 1, . . . ,m. This requirement is clearly fulfilled whenS is the Structal
score.

For all x ∈ Rn, we define

Imin(x) = {i ∈ {1, . . . ,m} | fi (x) = fmin(x)}.

Here, we will define a Newtonian trust-region method for solving (3.1). This method will be applied
to the protein alignment problem.

Before defining the main algorithm, let us give a technical lemma, which will be useful in proving
that our method is well defined and converges. The proof of this lemma may be considered an exercise
on the applications of Taylor’s multidimensional formula and will be omitted here. Observe that this
lemma refers to an arbitrary sequence{xj } converging tox, not necessarily generated by a particular
algorithm.
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LEMMA 3.1 Let {xj } be a sequence that converges tox̂ ∈ Rn and let f : Rn → R possess Lipschitz
continuous second derivatives on an open and convex set that contains{xj }. We defineψ j , the second-
order quadratic approximation off (x), by

ψ j (x) ≡ f (xj )+ ∇ f (xj )
T(x − xj )+ 1

2(x − xj )
T∇2 f (xj )(x − xj ).

Assume that{Δ j } is a sequence of positive numbers that tends to zero anddefinex j as a global mini-
mizer ofψ j (x) subject to‖x − xj ‖ 6 Δ j . Finally, assume that the condition

∇ f (̂x) = 0 and ∇2 f (̂x) < 0 (3.2)

does not hold, and define

ρ j =
f (x j )− f (xj )

ψ j (x j )− ψ j (xj )
. (3.3)

Then

lim
j→∞

ρ j = 1.

Let us now introduce the main algorithm used in this work. When applied to ordinary smooth min-
imization (m = 1), this method is similar to Algorithm basic trust-region (BTR) ofConnet al. (2000).
The precise relations will be discussed in a remark below. The specific characteristics of the algorithm
were chosen so as to take account of the application to the protein alignment problem. For example, we
compute the global solution of the Euclidean trust-region problem, instead of an approximate solution,
because in the protein alignment application the cost of solving trust-region problems is negligible in
comparison to the cost of computing the objective function. Moreover, the trust-region radius at the
beginning of each iteration is chosen independently of the trust-region radius at the previous iteration.
The motivation for this decision is that, in the protein alignment problem, the functionfi that defines
the quadratic model changes abruptly between consecutive iterations. Therefore, there is no reason to
believe that the information provided by an old trust-region radius would be useful in deciding the size
of a new trust region. The independence of the trust-region radius is expressed in Algorithm3.2stating
thatΔ0

k > Δmin at the beginning of each iteration (Step 3.1 below). This strategy has been used in
Friedlanderet al.(1994) in the context of first-order trust-region methods for solving smooth equations.
In Section 4, we give more details on the initial trust-region choice.

ALGORITHM 3.2 Assume thatΔmin > 0, σ1, σ2 ∈ (0, 1) (with σ1 < σ2) andα ∈ (0, 1) are given
independently ofk. Let x0 ∈ Rn be the initial approximation to the solution of (3.1).

For all k ∈ N, i ∈ {1, . . . ,m}, x ∈ Rn, we define

ψk
i (x) = fi (xk)+ ∇ fi (xk)

T(x − xk)+ 1
2(x − xk)

T∇2 fi (xk)(x − xk).

Step 1. Initialize k← 0.

Step 2. Chooseν(k) ∈ Imin(xk). If

‖∇ fν(k)(xk)‖ = 0 and ∇2 fν(k)(xk) < 0, (3.4)

terminate the execution of the algorithm.
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Step 3. Newton trust-region step.

Step 3.1.ChooseΔ0
k > Δmin. SetΔ← Δ0

k.

Step 3.2.Computex(Δ), a global minimizer ofψk
ν(k)(x), subject to‖x − xk‖ 6 Δ.

Step 3.3. If

fmin(x(Δ)) 6 fmin(xk)+ α[ψk
ν(k)(x(Δ))− ψ

k
ν(k)(xk)], (3.5)

definexk+1 = x(Δ),Δk = Δ, k← k+ 1 and go to Step 2.
Else, chooseΔnew ∈ [σ1‖x(Δ)− xk‖, σ2Δ], Δ← Δnew and go to Step 3.2.

REMARK 3.3 When applied to ordinary smooth minimization (LOVO withm = 1), Algorithm 3.2 is
similar to Algorithm BTR ofConnet al. (2000). The main difference is in the choice of the initial trust-
region radius employed at the beginning of each iteration. In BTR, it is imposed thatΔ0

k > γ2Δk−1,
whereγ2 ∈ (0, 1) is an algorithmic parameter. The reasons for our choice ofΔ0

k > Δmin are given
above. On the other hand, our choice of the trial step by minimization of the model is a particular case
of the step calculation of BTR. The remaining differences are merely formal. For example, we do not
change the iteration number when the sufficient descent condition fails, whereas in BTR this failure
defines an ‘unsuccessful iteration’ andxk+1 is set to be equal toxk.

In Theorem3.4, we prove that if (3.4) does not hold atxk, then the iteration that computesxk+1 is
well defined. That is, after a finite number of reductions ofΔ, one obtainsxk+1 such that the sufficient
descent criterion (3.5) holds. Using the terminology of Algorithm BTR ofConn et al. (2000), this
theorem says that if there are only finitely many successful iterations, thenxk is a critical point for allk
large enough. So this theorem roughly corresponds to Theorem 6.4.4 ofConnet al. (2000) for smooth
problems.

In the rest of the paper, we will assume that, for alli = 1, . . . ,m, ∇2 fi (x) is Lipschitz continuous
in an open and convex set that contains all the iterates generated by Algorithm3.2.

THEOREM 3.4 If xk, ν(k) do not satisfy (3.4), thenxk+1 is well defined and satisfies

fmin(xk+1) 6 fmin(xk)+ α[ψk
ν(k)(xk+1)− ψ

k
ν(k)(xk)] < fmin(xk). (3.6)

Proof. Assume thatxk, ν(k) do not satisfy (3.4). Definei = ν(k). Then,

∇ fi (xk) 6= 0 (3.7)

or

∇ fi (xk) = 0 and ∇2 fi (xk) 6< 0. (3.8)

Observe that

ψk
i (xk) = fi (xk) = fmin(xk). (3.9)

For allΔ > 0, wedefinex(Δ) as a minimizer ofψk
i (x) subject to‖x− xk‖ 6 Δ. By (3.7) and (3.8),

xk is not a minimizer of this subproblem.
Define, for allΔ > 0,

ρ(Δ) =
fi (x(Δ))− fi (xk)

ψk
i (x(Δ))− ψ

k
i (xk)

.
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By Lemma3.1, if {Δ j } is a sequence of positive numbers that tends to zero, we have

lim
j→∞

ρ(Δ j ) = 1.

Therefore, limΔ→0ρ(Δ) = 1. Since fmin(x(Δ)) 6 fi (x(Δ)), this implies that forΔ sufficiently small,
(3.6) will be fulfilled. So the proof is complete. �

REMARK 3.5 Theorem3.4 says that if Algorithm3.2 terminates atxk, then there existsi ∈ Imin(xk)
such thatxk is a second-order stationary point offi . The reciprocal is not true. For example, define,
with n = 1 andm = 2, f1(x) = x and f2(x) = x2. Clearly, 0 is a second-order stationary point off2.
However, if one choosesν(k) = 1, the algorithm will not stop and, in fact, it will find a better point such
that fmin(x) < fmin(0).

The following theorem is our main global convergence result. Essentially, we prove thatall the
limit points of sequences generated by Algorithm3.2 are first-order and second-order stationary. It is
interesting to observe that in the smooth case (m = 1), second-order stationarity of all the limit points
could not be obtained for the radius-updating rules of BTR. The additional requirement A.A.3 (Conn
et al., 2000, p. 158) was imposed in BTR to obtain this result. It is interesting to realize that by using
the simple requirement thatΔ0

k > Δmin, the second-order criticality of all the accumulation points may
be obtained without serious difficulties.

THEOREM 3.6 Assume that, for an infinite set of indicesK ⊂ N, we have limk∈K = x∗, where{xk} is
an infinite sequence generated by Algorithm3.2. Then the following hold.

1. If i ∈ {1, . . . ,m} is such thatν(k) = i for infinitely many indicesk ∈ K , then

∇ fi (x∗) = 0 and ∇2 fi (x∗) < 0. (3.10)

2. There existsi ∈ Imin(x∗) such that∇ fi (x∗) = 0 and∇2 fi (x∗) < 0.

Proof. The sequence{Δk}k∈K satisfies one of the following possibilities:

lim inf
k∈K

Δk = 0 (3.11)

or

{Δk}k∈K is bounded away from 0. (3.12)

Assume, initially, that (3.11) holds. Then there exists an infinite set of indicesK1 ⊂ K such that

lim
k∈K1

Δk = 0. (3.13)

Therefore, there existsk1 ∈ N such thatΔk < Δmin for all k ∈ K2, whereK2 ≡ {k ∈ K1 | k > k1}.
Since, at each iteration, the initial trial trust-region radius is greater than or equal toΔmin, it turns out
that, for allk ∈ K2, there existΔk andx(Δk) suchthatx(Δk) is a global solution of

Minimizeψk
i (x),

‖x − xk‖ 6 Δk,
(3.14)

but

fi (x(Δk)) > fmin(x(Δk)) > fi (xk)+ α[ψk
i (x(Δk))− ψ

k
i (xk)]. (3.15)
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Clearly, (3.14) impliesthatx(Δk) is a global solution of

Minimizeψk
i (x),

‖x − xk‖ 6 ‖x(Δk)− xk‖.
(3.16)

By the definition ofΔk at Step 3 of Algorithm3.2, we have

Δk > σ1‖x(Δk)− xk‖. (3.17)

Therefore, by (3.13) and (3.17), we have

lim
k∈K3
‖x(Δk)− xk‖ = 0. (3.18)

Define

ρk =
fi (x(Δk))− fi (xk)

ψk
i (x(Δk))− ψk

i (xk)
. (3.19)

By Lemma3.1, if (3.10) does not hold, we have that limk∈K2 ρk = 1, which contradicts (3.15).
Therefore, (3.10) is proved in the case (3.11).

Let us consider the possibility (3.12). Since fmin(xk+1) 6 fmin(xk) for all k, and limk∈K xk = x∗,
by the continuity offmin, we have limk→∞[ fmin(xk+1)− fmin(xk)] = 0. Therefore, by (3.6),

lim
k∈K

(ψk
i (xk+1)− ψ

k
i (xk)) = 0. (3.20)

DefineΔ = inf
k∈K1

Δk > 0 and let̂x be a global solution of

Minimize∇ fi (x∗)T(x − x∗)+ 1
2(x − x∗)T∇2 fi (x∗)(x − x∗),

‖x − x∗‖ 6 Δ/2.
(3.21)

Let k3 ∈ N such that

‖xk − x∗‖ 6 Δ/2 (3.22)

for all k ∈ K4 ≡ {k ∈ K | k > k3}.
By (3.21) and (3.22), for all k ∈ K4, we have

‖x̂ − xk‖ 6 Δ 6 Δk. (3.23)

Therefore, sincexk+1 is a global minimizer ofψk
i (x) subject to‖x − xk‖ 6 Δk, we get

ψk
i (xk+1) 6 ψ

k
i (̂x) = ψ

k
i (xk)+ ∇ fi (xk)

T(̂x − xk)+ 1
2 (̂x − xk)

T∇2 fi (xk)(̂x − xk). (3.24)

So

ψk
i (xk+1)− ψ

k
i (xk) 6 ∇ fi (xk)

T(̂x − xk)+ 1
2 (̂x − xk)

T∇2 fi (xk)(̂x − xk). (3.25)

By (3.20), taking limits in (3.25) for k ∈ K3, we have that

06 ∇ fi (x∗)
T(̂x − x∗)+ 1

2 (̂x − x∗)
T∇2 fi (x∗)(̂x − x∗).
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Therefore,x∗ is a global minimizer of (3.21) for which the constraint‖x − x∗‖ < Δ/2 is inactive.
This implies that∇ fi (x∗) = 0 and∇2 fi (x∗) < 0.

So the first part of the statement has been proved.
Now, let us prove the second part of the statement. Since{1, . . . ,m} is finite, there existsi ∈

{1, . . . ,m} such thati = ν(k) for infinitely many indicesk ∈ K1 ⊂ K . So, for allk ∈ K1,

fi (xk) 6 f j (xk) ∀ j ∈ {1, . . . ,m}.

Taking limits in the previous inequality and using the first part of the statement, we get

fi (x∗) 6 f j (x∗) ∀ j ∈ {1, . . . ,m}.

Therefore,i ∈ Imin(x∗). �

ASSUMPTION3.7 We say that this assumption holds atx∗ if for all i ∈ Imin(x∗) such that∇ fi (x∗) = 0,
we have∇2 fi (x∗) � 0.

LEMMA 3.8 Assume thatx∗ is a limit point of a sequence generated by Algorithm3.2and that Assump-
tion 3.7holds atx∗. Then there existsε > 0 such that the reduced ballB(x∗, ε)− {x∗} does not contain
limit points of {xk}.

Proof. If i ∈ Imin(x∗) and∇ fi (x∗) = 0, we have, by Assumption3.7, that∇2 fi (x∗) is positive definite.
Therefore, by the inverse function theorem,∇ fi (x) 6= 0 for all x 6= x∗ in a neighbourhood ofx∗.

If i ∈ Imin(x∗) and∇ fi (x∗) 6= 0, then∇ fi (x) 6= 0 in a neighbourhood ofx∗.
Finally, if i /∈ Imin(x∗), we havefi (x∗) > fmin(x∗). So fi (x) > fmin(x) andi /∈ Imin(x) for all x in

a neighbourhood ofx∗.
Therefore, there existsε > 0 such that∇ fi (x) 6= 0 wheneveri ∈ Imin(x) andx ∈ B(x∗, ε) − {x∗}.

Therefore, by Theorem3.6, x cannot be a limit point of a sequence generated by Algorithm3.2, for all
x ∈ B(x∗, ε)− {x∗}. �

LEMMA 3.9 Suppose thatx∗ satisfies Assumption3.7 and limk∈K xk = x∗, where{xk} is a sequence
generated by Algorithm3.2andK is an infinite subset of indices. Then

lim
k∈K
‖xk+1− xk‖ = 0.

Proof. Let I be the set of integers in{1, . . . ,m} such thati = ν(k) for infinitely many indicesk ∈ K .
Since fi (xk) = fmin(xk) infinitely many times, we obtain, taking limits, thati ∈ Imin(x∗) for all i ∈ I .
Therefore, by Theorem3.6, ∇ fi (x∗) = 0 and, consequently, limk∈K ∇ fi (xk) = 0 for all k ∈ I . This
implies that

lim
k∈K
∇ fν(k)(xk) = 0. (3.26)

Moreover, by Assumption3.7, ∇2 fi (xk) � 0 for all i ∈ I . So, by the continuity of the Hessians, there
existsc > 0 such that, for allλ > 0 andk ∈ K large enough,

‖[∇2 fν(k)(x)+ λI ]−1‖ 6 ‖∇2 fν(k)(x)
−1‖ 6 2 max

i∈I
‖∇2 fi (x∗)

−1‖ = c. (3.27)

Now, xk+1 is a solution of

Minimizeψk
ν(k)(x) subject to‖x − xk‖ 6 Δk. (3.28)
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Therefore, by the Karush-Kuhn-Tucker (KKT) conditions of (3.28),

(∇2 fν(k)(xk)+ λk I )(xk+1− xk)+ ∇ fν(k)(xk) = 0,

λk‖xk+1− xk‖ = 0,

λk > 0, ‖xk+1− xk‖ 6 Δk.

(3.29)

Therefore, by (3.27), ‖xk+1 − xk‖ 6 c‖∇ fν(k)(xk)‖ for k ∈ K large enough and, by (3.26),
limk∈K ‖xk+1− xk‖ = 0, as we wanted to prove. �

THEOREM3.10 Assume thatx∗ is a limit point of a sequence{xk} generated by Algorithm3.2. Suppose
that Assumption3.7holds atx∗. Then the whole sequencexk converges quadratically tox∗.

Proof. Let K be an infinite sequence of indices such that limk∈K xk = x∗. Let us prove first that

lim
k→∞

xk = x∗.

By Lemma3.8, there existsε > 0 such thatx∗ is the unique limit point in the ball with centrex∗ and
radiusε. Define

K1 = {k ∈ N | ‖xk − x∗‖ 6 ε/2} .

The subsequence{xk}k∈K1 converges tox∗, sincex∗ is its unique possible limit point. Therefore, by
Lemma3.9,

lim
k∈K1
‖xk+1− xk‖ = 0. (3.30)

Let k1 be such that, for allk ∈ K1, k > k1,

‖xk+1− xk‖ 6
ε

2
.

The setB(x∗, ε) − B(x∗, ε/2) does not contain limit points of{xk}. Therefore, there existsk2 ∈ N
such that, for allk > k2,

‖xk − x∗‖ 6
ε

2
or ‖xk − x∗‖ > ε.

Let k ∈ K1 such thatk > max{k1, k2}. Then

‖xk+1− x∗‖ 6 ‖xk − x∗‖ + ‖xk+1− xk‖ 6
ε

2
+
ε

2
= ε.

Sincexk+1 cannot belong toB(x∗, ε) − B(x∗, ε/2), it turns out that‖xk+1 − x∗‖ 6 ε/2. Therefore,
k+ 1 ∈ K1. So we may prove by induction thatx` ∈ K1 for all ` > k. By (3.30), this implies that

lim
k→∞

xk = x∗. (3.31)

Let us now prove the quadratic convergence.
Let I∞ ⊂ {1, . . . ,m} be the set of indicesi such thati = ν(k) infinitely many times. Then there

existsk2 such that for allk > k2, ν(k) ∈ I∞.
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Now, if i ∈ I∞ it turns out thatfi (xk) = fmin(xk) infinitely many times. Therefore, by (3.31) and
the continuity of fi and fmin, we havei ∈ Imin(x∗). By Theorem3.6, ∇ fi (x∗) = 0. Therefore, by
Assumption3.7, ∇2 fi (x∗) � 0. Thus, by the continuity of the Hessians, there existsci > 0 such that
∇2 fi (x) is positive definite and‖∇2 fi (x)−1‖ 6 ci for all x in a neighbourhood ofx∗. This implies that
there existsk3 > k2 such that∇2 fν(k)(xk) is positive definite and‖∇2 fν(k)(x)−1‖ 6 β ≡ max{ci , i ∈
I∞} for all k > k3.

Therefore, for allk > k3, we may define

xk = xk − ∇
2 fν(k)(xk)

−1∇ fν(k)(xk). (3.32)

Since∇ fi (x∗) = 0 for all i ∈ I∞, we have limk→∞∇ fν(k)(xk) = 0. Then, by the boundedness of
‖∇2 fν(k)(x)−1‖, we have‖xk − xk‖ → 0; therefore, fork large enough,‖xk − xk‖ 6 Δmin. But xk is,
for k large enough, the unconstrained minimizer ofψk

ν(k). Therefore, since the first trust-region radius
at each iteration is greater than or equal toΔmin, it turns out that, fork largeenough,xk is the first trial
point at each iteration of Algorithm3.2.

By (3.32), we have

|ψk
ν(k)(xk)− ψ

k
ν(k)(xk)| = 1

2(xk − xk)
T∇2 fν(k)(xk)(xk − xk).

Therefore, by Assumption3.7, there existsc > 0 such that fork large enough,

|ψk
ν(k)(xk)− ψ

k
ν(k)(xk)| > c‖xk − xk‖

2. (3.33)

Define

ρk =
fν(k)(xk)− fν(k)(xk)

ψk
ν(k)(xk)− ψk

i (xk)
.

By (3.33), and Taylor’s formula, we have

|ρk − 1| =

∣
∣
∣
∣
∣

fi (xk)− fi (xk)− [ψk
i (xk)− ψk

i (xk)]

ψk
i (xk)− ψk

i (xk)

∣
∣
∣
∣
∣
6

o(‖xk − xk‖2)

c‖xk − xk‖2
. (3.34)

Since‖xk − xk‖ → 0, we see thatρk → 1. Therefore, fork large enough, the sufficient descent
condition (3.6) is satisfied at the first trialpointxk. Therefore,xk+1 = xk for k large enough. This means
that, fork > k3 large enough,

xk+1 = xk − ∇
2 fν(k)(xk)

−1∇ fν(k)(xk).

Then, by the elementary local convergence theory of Newton’s method (see, e.g.Dennis & Schnabel,
1983, pp. 90–91), we find that, fork large enough,

‖xk+1− x∗‖ 6 βγ ‖xk − x∗‖
2,

whereγ is a Lipschitz constant for all the Hessians∇2 fi (x). �
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4. Numerical results

Algorithm 3.2was implemented with the following specifications.

1. We chooseα = 0.1, σ1 = 0.001 andσ2 = 5/9.

2. The initialΔ0
k at each iteration was chosen as the average norm of the Cα atoms of the proteinQ

at their original positions multiplied by 10. In terms of Algorithm3.2, we may consider thatΔmin
is equal toΔ0

k.

3. When (3.5) does not hold,Δnew is computed in the following way. We define

Ared= fmin(xk)− fmin(x̄),

Pred= ψk
ν(k)(xk)− ψ

k
ν(k)(x̄)

and

Δnew= max

{
0.001,

Pred

2(Pred− Ared)

}
× ‖x̄ − xk‖. (4.1)

The fact thatΔnew 6 σ2‖x̄ − xk‖ is guaranteed forσ2 = 5/9 because Ared< αPred in the case
whereΔnew needs to be computed andα = 0.1 in our implementation.

We arrived to the formula (4.1) after experimentation with other possibilities, including the classical
ones associated with smooth trust-region methods (see, e.g.Fletcher, 1987, pp. 95–96).

In order to optimize the behaviour of Algorithm3.2, it was crucial to define a ‘big’ trust-region
radius at the beginning of each iteration. The trust-region radius that defines the first trial point was
chosen to be independent of the last trust-region radius employed at the previous iteration. This decision
allowed the algorithm to use, very frequently, pure Newton steps and avoided artificial short steps far
from the solution. Since the functionfi that definesfmin at a trial point may be different than the one
that definesfmin at the current point, the quadratic model offmin tends tounderestimatethe true value
in many cases.

We implemented Algorithm3.2 under the framework of the Betra standard trust-region method
for box-constrained optimization (Andrettaet al., 2005) (see www.ime.usp.br/∼egbirgin/tango). Since
our problem is unconstrained, we set artificial bounds−1020 and 1020 for each variable. The Betra code
needed to be adapted to the algorithmic decisions described at the beginning of this section. In the uncon-
strained case, Betra is a standard trust-region method that uses the Moré–Sorensen algorithm (Moré &
Sorensen,1983). Many line-search and trust-region methods for smooth unconstrained minimization
may be used for solving (3.1) if one simply ignores the nonsmoothness of the objective function ‘defin-
ing’ ∇ fmin(x) = ∇ fi (x) and∇2 fmin(x) = ∇2 fi (x) for somei ∈ Imin(x). Of course, the theoretical
properties may change for each algorithmic choice. For example, we cannot expect the thesis of Theo-
rem3.6to hold if one uses the TRON (Lin & Mor é, 1999) or BOX-QUACAN (Friedlanderet al., 1994)
algorithms, since this theorem does not hold for those algorithms in the ordinary smooth case (m= 1).

Numerical experiments were run on an AMD Opteron 242 with 1 Gb of RAM running Linux. The
software was compiled with the GNU fortran compiler version 3.3 with the ‘-O3 -ffast-math’ options.

For each pair of proteins, our purpose is to find the displacement that maximizes similarity. We
adopt the Structal score (2.3) as the similarity measure. This means that, for computing the objective
function, given the relative positions of the two proteins, one needs to find the admissible bijection that
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maximizes (2.3). This is done using DP. Therefore, a DP problem must be solved at each iteration of the
optimization algorithm for computing the objective function. The trust-region algorithm that optimizes
the Structal score using DP will be called DP-Trust. Analogously, a line-search algorithm that optimizes
the same score is described inMartinezet al. (2007) and will be called DP-LS.

Since the DP procedure is, by far, the most expensive task of DP-Trust and DP-LS, we introduced
a different problem, where similarity is defined as follows. On one hand, admissible correspondences
between the proteins are merely functions between subjects ofQ andP, for which neither bijectivity
nor monotonicity is required. The cardinality of the domain of these functions is prescribed to be 90%
of the Cα atoms ofQ. On the other hand, penalty gaps are not employed in this formulation. As a
consequence, the computation of the objective function does not need DP computations. A cheap pro-
cedure for computing the NB correspondences is described inMartinezet al.(2007) andAndreaniet al.
(2008a). The algorithm for solving this problem using the trust-region approach will be called NB-Trust)
and the line-search algorithm having the same purpose will be called NB-LS.

DP-Trust (DP-LS) and NB-Trust (NB-LS) aim to solve two different mathematical problems. How-
ever, both mathematical problems are directed to the same biological purpose of getting the best possible
alignment. For this reason, after finishing the execution of NB algorithms, we computed using DP (only
once) the (bijective, nonmonotone) Structal score corresponding to the final displacements obtained (by
NB). This allows us to compare the model simplification that leads to NB-like problems with the orig-
inal DP-like formulation. We will see that, for similar proteins, the best NB correspondence found by
the NB approach tends to satisfy monotonocity and bijectivity.

It is worth mentioning that the NB formulation can be applied to more general structural alignment
problems, where monotonicity and bijectivity are not required (Andreaniet al., 2008a).

The computer time of both DP and NB approaches is dominated by the computation of the objective
function. In DP-Trust, on average, 98% of the time is spent in the DP subroutine and 1.4% of the time
is spent computing gradients and Hessians. Similar estimates hold for the line-search algorithm DP-LS.

All the algorithms considered here are initiated with the same initial point. Recall that ‘point’ in
our context is equivalent to ‘displacement’ and is characterized by six parameters (translation and Euler
angles). The initial point was obtained by means of a heuristic procedure described inMartinezet al.
(2007) that uses internal distances and involves a DP calculation. As a consequence, each complete
alignment using NB-Trust uses two DP computations, one for obtaining the initial approximation and
other for computing the final (monotone, bijective) Structal score. On average, these two DP steps take
61% of the computer time. The procedure for computing the NB correspondence takes 16% of the
computer time and the computation of gradients and Hessians takes 15%.

The resolution of the trust-region subproblems using the Moré–Sorensen algorithm takes, on aver-
age, less than 0.1% of the computer time, in the case of both DP-Trust and NB-Trust. Therefore, it is
not worthwhile to use approximate solutions of trust-region subproblems, as many algorithms for large-
scale optimization do (seeConnet al., 2000; Friedlanderet al., 1994; Lin & Mor é, 1999; Nocedal &
Wright, 1999, Chapter 4, among others).

4.1 Numerical comparison

We compared the performances of DP-Trust, DP-LS, NB-Trust, NB-LS and Structal using 79800 align-
ment problems, which involve both related and unrelated proteins. A set of 400 proteins was chosen
from a DALI (Holm & Sander, 1993, 1996) classification: 20 proteins were selected randomly within
the DALI alignment database and the 20 best matches (according to DALI) for each of these 20 pro-
teins were also included in the set. As a consequence, we collected 400 proteins where both different
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TABLE 1 Computer time required for an average alignment by eachmethod

Method Average time per alignment (s) One-to-all in PDB (min) All-to-all inPDB
DP-LS 0.127 75 2.5 years
DP-Trust 0.141 82 2.8 years
NB-LS 0.033 19 7.7 months
NB-Trust 0.033 19 7.7 months
Structal 0.224 130 4.4years

and similar structures are present, approximately grouped in sets of 20. The list of proteins used in the
comparison is available at the LovoAlign site. Each alignment process was stopped when the difference
between scores at two consecutive iterations was less than or equal to 10−6.

4.2 Average computer times

Table 1 reports average computer times, disregarding the effective scores obtained by the different
methods. We also show estimates of the computer time that would be used by the alignment of one
protein to the whole PDB (about 35000 structures to date) and the all-on-all alignment of all PDB files
(∼35000× (35000− 1)/2 alignments). The numbers in the last two columns of the table were esti-
mated using the average time per alignment and are included here only to give the reader a rough and
an intuitive idea. Some single one-to-all alignments were performed and confirmed these estimates.

The methods that use NB correspondences (NB-LS and NB-Trust) are faster because computing
the best NB correspondence (given the displacement) is much easier than computing the best bijective
and monotone correspondence using DP. In fact, the whole application of NB methods involves two DP
calls, one at the beginning, to compute the initial approximation, and the other at the end, to compute
the final Structal score. As shown before, more than 60% of the computer time used by these methods
is spent in these two DP calculations.

Line-search and trust-region methods turned out to be more efficient than Structal in terms of overall
computer time. The introduction of the trust-region strategy in place of the line-search procedure did
not improve the speed of the line-search methods.

We observe that the alignment of one protein to the whole PDB takes less than 2 h. The alignment
of all the proteins in the PDB would require several months, using a single processor. However, this job
may be obviously done in parallel, since different alignments are entirely independent. So, the whole
task may be completed in quite affordable computer time for practical purposes.

The slightly bigger computer time required by DP-Trust relative to DP-LS is not a serious limitation,
since score improvement is more important in massive alignments.

4.3 Performance profiles

Performance profiles (Dolan & Moré, 2002) concerning the comparison of the five methods are pre-
sented in this section. Since for each alignment there is no clear global solution known, we consider for
each alignment that the score at the ‘solution’ is the best score obtained by the methods being compared.
Then, we considered that the other method ‘solved’ the problem if the score obtained is similar to the
best score up to a relative tolerance of 0.1%. If a method ‘does not solve’ a problem, we consider, that
the computer time used is∞. Let T be the total number of problems. Given the abscissax > 1, the pro-
file curve of a method takes the valuey if there areyT problems in which the computer time employed
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by this method is less than or equal tox times the computer time used by the best of the methods for the
problem. The abscissax is called ‘relative time tolerance’ in Figs2–4 and goes fromx = 1 to x = 10.

4.3.1 DP-trust-region against Structal.The performance profile corresponding to the comparison of
DP-Trust against the Structal method is provided in Fig. 2. The performance profile curve is practically
horizontal. This means that the differences detected here are almost exclusively related with the quality
of the solution obtained and not with computer time. Essentially, the graphic says that DP-Trust obtained
a better solution than Structal in 53% of the alignments and that Structal obtained a better score in 47%
of the cases. The curve reveals that, essentially, no ties were detected in terms of final scores.

4.3.2 DP-Trust-region against DP-LS.In Fig. 3, the performance profile comparing DP-Trust and
DP-LS is exhibited.

The differences between these algorithms are a consequence of the introduction of the trust-region
strategy.

We observe that DP-Trust obtains the best scores in 71% of the alignments, while DP-LS arrives to
the best solutions in 67% of the problems. Therefore, the substitution of the line-search procedure by
the trust-region one improves the quality of alignments. In 38% of the problems, DP-Trust and DP-LS
arrive to the same final scores. Forx > 4, the performance profile curve is practically horizontal. This
means that there are no problems in which both methods obtained the same scores being one of them
more than four times faster than the other. The relative computer time in the cases in which both methods
obtained the same scores can be seen forx < 4. For example, forx = 2, we observe that DP-Trust was

FIG. 2. Performance profile comparing the DP-Trust method with the Structal method. (b) Zoom of (a).

FIG. 3. Performance profile comparing the DP-Trust method with the DP-LS method. (b) Zoom of (a).
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FIG. 4. Performance profile comparing the NB-Trust method with the NB-LS method. (b) Zoom of (a).

at least as good as DP-LS in 69% of the cases and that DP-LS was as least as good as DP-Trust in 65%
of the problems. This means that in 34% of the problems, both methods obtained the same scores and
none of them was more than two times faster than the other.

4.3.3 NB-Trust-region against NB-LS.There is no meaningful differences when we compare
NB-Trust and NB-LS strategies, as shown in Fig. 4. In this set of alignments, NB-Trust obtains the
best score (relatively ‘only’ to these two methods) in 81% of the problems, while NB-LS obtains best
scores in 82% of the alignments.

4.4 Robustness and score relevance

Performance profiles illustrate the fact that protein alignment problems may have a huge number of
local solutions. Of course, we prefer the best possible local optimum, but the analysis is not exhausted
by this trivial observation. In protein alignment problems, one is not really interested in obtaining the
best possible scores when the proteins are very dissimilar. Even getting a guaranteed global solution
would be quite irrelevant in the case of very poor alignments.

What is important is to obtain good scores (if possible, the best) in the cases in which the proteins
to be compared possess some reasonable degree of similarity. Recall that the alignment process returns,
as a by-product, a bijection that ideally shows where is the similarity between the structures. In the case
of poor alignments, the bijection found has no biological meaning at all.

With this in mind, we decided to exhibit the behaviour of each algorithm as a function of the simi-
larity. By (2.3), the maximal Structal score that can be obtained in an alignment is 20 times the number
of Cα atoms of the smallest of the two proteins being compared. For example, this is the score that
one obtains comparing two identical proteins or two proteins such that one of them is a gap-free mono-
tone subset of the other. Therefore, dividing the Structal score by the number of atoms of the smallest
protein, one obtains a size-independent measure of similarity. This measure will be called ‘scaled sim-
ilarity’. Accordingly, we define the ‘Quality’ of an alignment as the best scaled similarity obtained by
the algorithms DP-Trust, DP-LS, NB-Trust, NB-LS and Structal, when used to align the corresponding
proteins. Consequently, the Quality of an alignment goes from 0 to 20 and we are mostly interested in
obtaining the best scores for high-quality alignments. Alignments with Quality smaller than three do not
have biological meaning.

In Fig. 5(a), we exhibit the percentage of problems in which each algorithm obtained the best score
(up to a relative precision of 0.1%) as a function of Quality. More precisely, given the valuex in the
abscissa, the curves in this graphic represent the percentage of alignments with Quality greater than or
equal tox in which the considered method obtained the best score.
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FIG. 5. Comparison of the performances of the algorithms as a function of the quality of the alignments. (a) Percentage of cases
in which each algorithm obtains the best score. (b) Relative difference between the value of the score obtained by each method
and the best score obtained by all methods.

Recall that, in the case of NB algorithms, although they do not optimize the original Structal score,
the Structal score is computed as a post-processing step.

We observe that, including very poor alignments, the Structal strategy is able to obtain the best
scores in the greatest number of cases, followed by DP methods and NB methods. This is due to the fact
that NB-Trust and NB-LS tend to find the same solutions frequently, whereas the coincidence between
these two methods and Structal is very rare. However, for alignments with Quality greater than only 2.5,
DP-LS and DP-Trust obtain the best scores more frequently.

For alignments with Quality greater than 10, the best scores are obtained by DP-Trust and DP-LS in
more than 80% of the problems, and for Quality greater than 13 this percentage grows to more than 98%.

NB procedures fail to obtain the best scores if one includes medium to poor alignments. However,
for Quality greater than 14, these methods also obtain the best scores. The reason is that the best NB
correspondence tends to be also monotone and bijective in these cases. Monotonicity and bijectivity may
be seen as constraints defining admissibility of correspondences that tend to be inactive at the solution,
in the case of good quality alignments.

In Fig. 5(b), the abscissa has the same meaning as in Fig. 5(a). Given the valuex in the abscissa, we
consider the setP(x) of all the problems with Quality greater than or equal tox. For each methodM
of our study and each problem inP(x), we compute the quotient between the scaled similarity obtained
by M and the Quality of the alignment problem. The average of these quotients over all the problems
in P(x) defines the point of the curve with abscissax corresponding to the methodM in Fig. 5(b).
Therefore, Fig. 5(b) shows how close to the best score each method gets, on average, as a function of
the alignment quality. We can see, here, that the Structal Method obtains scores which are, on average,
better than the ones obtained by NB methods. However, NB methods obtain better scores than Structal
for good alignments. The use of DP in combination with smooth optimization strategies results in greater
robustness, as shown by the performances of the DP-Trust and DP-LS methods, and the use of the trust-
region algorithm instead of the line-search strategy improves slightly the quality of the results for all
meaningful alignment qualities.

5. Final remarks

Protein alignment is a challenging area for rigorous continuous optimization. There is a lot of space for
the development of algorithms with well-established convergent theories that, presumably, converge to
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local optimizers and many times to global ones. We feel that line-search and trust-region methods for
(2.1) are rather satisfactory, but different alternatives should be mentioned. InAndreaniet al. (2005),
problems like (2.1) were reformulated as smooth nonlinear programming problems with complementar-
ity constraints. This reformulation should be exploited in future works.

In this paper, we showed that the trust-region approach has some advantages over the line-search
algorithm in terms of robustness, at least when one deals with DP methods. We conjecture that the
advantages of trust-region methods over line-search methods may be more impressive in other struc-
tural alignment problems. In particular, preliminary results for alignments in which we allow internal
rotations of the objects (seeAndreaniet al., 2008a) suggest that, in those cases, pure Newton direc-
tions are not so effective and restricted trust-region steps could help. Further research is expected with
respect to flexible alignments (Li et al., 2006; Shatskyet al., 2002; Ye & Godzik, 2003) in the near
future.

In the experiments reported here, we always used the Structal score and we recalled that the Structal
Method iteration maximizes this score at its first phase and minimizes the sum of squared distances
root-mean square deviation (RMSD) for the selected bijection at its second phase. This second-phase
minimization admits an analytical solution (Kearsley, 1989). Our approach here has been to maintain
the first phase (and the Structal score) changing the second phase to preserve coherence. The oppo-
site choice is possible. We may preserve the Procrustes second phase, employing, at the first phase, a
different score. An entirely compatible score with the Procrustes second phase may be defined by

S(D, Φ) = 20
∑

k∈D(Φ)

max

[

0, 1−
(
‖Pk − D(QΦ(k))‖

d0

)2
]

− 10× gaps,

where D, Φ,
∑

and gaps are as in (2.3) andd0 is a threshold distance. If the distance between two
Cα atoms (associated byΦ) exceedsd0, its contribution to this score is zero. Maximizing this score is
equivalent to minimizing the RMSD for the atoms for whichdi is less thand0. Three methods based on
differentd0 values are also available in the LovoAlign software package.

We conjecture that the LOVO methodology may be employed in connection to alignment and
protein classification in a number of different related problems: conservation of residues in columns
of a multiple sequence alignment (Liu et al., 2006), percentage identity (Raghava & Barton, 2006),
support vector machine (SVM) detection of distant structural relationships (Ogul & Mumcuoglu, 2006),
protein–protein interfacial residual identification (Li et al., 2006), prediction of subcellular localiza-
tion (Kim et al., 2006), 3D enzyme modelling (Singhet al., 2006), determination of score coefficients
(Kececioglu & Kim, 2006), hierarchical clustering (Gambin & Slonimski, 2005) and many others.
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