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ABSTRACT: Preferential solvation is a fundamental param-
eter for the interpretation of solubility and solute structural
stability. The molecular basis for solute−solvent interactions
can be obtained through distribution functions, and the
thermodynamic connection to experimental data depends on
the computation of distribution integrals, specifically Kirk-
wood-Buff integrals for the determination of preferential
interactions. Standard radial distribution functions, however,
are not convenient for the study of the solvation of complex,
nonspherical solutes, as proteins. Here we show that
minimum-distance distribution functions can be used to compute KB integrals while at the same time providing an insightful
view of solute−solvent interactions at the molecular level. We compute preferential solvation parameters for Ribonuclease T1 in
aqueous solutions of urea and trimethylamine N-oxide (TMAO) and show that, while macroscopic solvation shows that urea is
preferentially bound to the protein surface and TMAO is preferentially excluded, both display specific density augmentations at
the protein surface in dilute solutions. Therefore, direct protein-osmolyte interactions can play a role in the stability and activity
of the protein even for preferentially hydrated systems. The generality of the distribution function and its natural connection to
thermodynamic data suggest that it will be useful in general for the study of solvation in mixtures of structurally complex solutes
and solvents.

1. INTRODUCTION

Biomolecules perform their function in an environment
comprised mainly of water molecules. In addition to water,
there are many other small- and macromolecules that influence
the equilibrium and kinetics of binding, folding, and conforma-
tional changes.1 Especially important are the osmolytes, which
are small, organic metabolites such as sugars and polyols, used
by organisms to protect biomolecules under denaturation stress
(due to heat, cold, pressure, or chemical denaturants).2,3 For an
elucidation of biomolecular stability and function on a
molecular scale, and toward the rational design and exploitation
of enzymes, it is indispensable to understand how biomolecules
in water interact with the third component.4,5 (Throughout this
paper, the third component is referred to as the cosolvent,
which encompasses both protein stabilizers - osmolytes - and
denaturants, both organic and inorganic, and both small- and
macromolecules.)
The modulation of protein stability by cosolvents can be

quantified via preferential solvation, i.e., the competition
between protein−water and protein−cosolvent interactions
for native and denatured states, which is accessible
experimentally by membrane dialysis, scattering, and analytical
ultracentrifugation.6 Such experiments, when complemented by

volumetric measurements,7 can determine both the protein−
water and protein−cosolvent interactions defined rigorously via
statistical thermodynamics.8−11 Such “interactions” are now
defined rigorously in terms of the net excess or deficit of water
and cosolvent concentrations from the bulk, referred to as the
Kirkwood-Buff integrals (KBI).8−11 KBIs serve not only as
powerful tool for rationalizing and explaining experimental data
on a variety of cosolvent-controlled effects (from biophysics,
formulation science, pharmacy to food science)5,12−15 but also
as a benchmark for simulation and force field determination.4,16

KBIs are usually defined as the integrals of the solute−
solvent distribution functions, most commonly the radial
distribution functions (RDFs). Radial distribution functions
are not convenient for the interpretation of the solvation of
structurally complex solutes. This is because they are computed
from the distances between the centers of masses, or specific
atoms, of the solute and solvent molecules,17 being highly
dependent on the solvent and solute shapes. Thus, the
necessity of more general distribution functions for the analysis
of solutes of complex shapes has been recognized fre-
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quently.18−21 In particular, the use of the distance of one
solvent site (an atom or the center of mass) of the solvent
molecule to the surface of the solute, or to the nearest solute
atom, was proposed independently by different authors as an
alternative to overcome the complexity of the solute
shape.18−20,22−27 This choice defines what has been called the
“solvation-shell” distribution functions, gss(r),

23,24 or proximal
distribution functions, g⊥(r),

18,22,26,27 which appeal directly to
the concept of Voronoi tesselation.21,28 In all cases, the
counting of nearest distances is straightforward from a
simulation, but the normalization procedure leading to the
distribution functions can be cumbersome.20 When using
Voronoi tesselation, the normalization might depend on the
estimation of the volumes in space associated with each
reference atom or site.21,26 The normalization of the solvation-
shell distribution function, on the other hand, has employed a
random distribution of solvent molecules.23,25,29

Independent computation of the KBIs for each solvent
component and its comparison with a distribution function that
reflects the solvent-shell structure are important for under-
standing the molecular basis of solvation of complex solutes,
biomolecules in particular. We demonstrate that these two aims
can be fulfilled simultaneously by adopting an alternative
distribution function, i.e., minimum-distance distribution
function, which is better suited for characterizing solution
structure according to the distance between the solute and
solvent surfaces, which is in line with our classical view of the
hydration shell of proteins. The resulting distribution functions
are clear to interpret from the point of view of molecular
interactions and can be naturally decomposed into the
contributions of each solvent atom.
Despite the powerfulness of KBIs as a bridge between the

microscopic solution structure and macroscopic thermody-
namics, KBI determination from simulation usually requires a
very large simulation box to account for the long-ranged
deviation of the radial distribution function (RDF) from 1 (i.e.,
the long-ranged deviation of the local concentration from the
bulk). To put it precisely, small nonzero g(r) − 1 at large r is
multiplied by the volume element, 4πr2, and contributes greatly
to KBIs. Therefore, the use of RDFs as a route for calculation
and interpretation of KBIs have been questioned,21 and a
number of proposals have been made to overcome this problem
computationally, in order to facilitate the calculation of KBIs via
RDFs. Because RDFs rely usually on the distance between the
centers of mass, nonspherical molecules require longer
distances for the RDF to converge to 1 due simply to their
shape.21 For ternary systems (solute, solvent, and cosolvent) it
is possible from KBIs to compute preferential interaction
parameters, which are a measure of the excess number of
cosolvent molecules in the domain of the solute and can be
determined experimentally.4,19,30,31 Interestingly, it is easier to
compute the preferential interaction parameter than KBIs.4,32,33

This is because the preferential interaction parameter can be
computed from the difference in the number of solvent and
cosolvent molecules in the “solute domain”, this being the
volume in space for which the solute affects effectively the
structure of the solvent.4,19,34 The computation of the KBIs for
each solvent component depends on the number of molecules
of that component on the protein domain relative to a
reference state, the pure solvent with the same density. The
calculation of the number of molecules of the solvent in the
solute domain depends, therefore, on the volume of the protein
domain, which must be independently determined.

Using the minimum-distance framework, we study the
preferential interactions of a model protein Ribonuclease T1
(RNaseT1) by urea and TMAO (trimethylamine N-oxide),
which are known experimentally to be preferentially attracted
and excluded from the vicinities of the protein.31 We show that
simulations reproduce the experimental preferential solvation
parameters but that the molecular interpretation for the
preferential exclusion is counterintuitive at first sight. Indeed,
both TMAO and urea exhibit local density augmentation at the
protein surface, particularly at low concentrations. The two
cosolvents, however, differ in their relative accumulation on the
protein surface relative to that of water, explaining the overall
preferential hydration or dehydration observed experimentally.
The detailed interpretation of the density augmentation of the
cosolvent molecules on the protein surface is beyond the reach
of conventional RDFs. The generality of the approach
presented here suggests that it can be useful for the study of
solvation in mixtures of solutes and solvents of complex shapes,
for which the definition of distribution functions to represent
solvation interactions can be cumbersome.

2. THEORY
2.1. General Formalism. In this work we will use

thermodynamic functions for the analysis of the solvation of
complex solutes using minimum-distance computations.
Throughout the paper, we will use the following notation:
subscript u to refer to the solute (protein), s to refer to any of
the solvent components (water or cosolvent), w to refer to
water, and c to refer to the cosolvent, either urea or TMAO.
Let nus(r) be ensemble average number density (which can

be converted to molarity by multiplying by Avogadro’s
number) of solvent atoms which are minimum-distance
atoms to the solute at r. We define nus*(r) as the number of
minimum distances that would be observed at r if there were no
solute−solvent interactions. Note that nus*(r) represents the
minimum-distance distribution in the presence of the solute but
in the absence of solute−solvent interactions. Such a definition
requires the presence of a “phantom” solute, which has no
attractive nor repulsive interaction with the solvent molecules,
but is present to define the position in the solution in the same
way as when the solute−solvent interactions are present.
The ratio between nus(r) and nus*(r) is the variation in density

associated with the insertion of the solute, and we will call it
gus
md(r)

≡ *g r
n r
n r

( )
( )
( )us

md us

us (1)

gus
md(r) has a simple physical interpretation: − RT ln gus

md(r)
represents the change in the potential of mean force at the
position r when the solute−solvent interactions are switched
on. If the solvent has a single site, or if any single reference
(center of mass or any atom) of the solvent is considered
instead of the minimum distance, gus

md(r) reduces to a standard
distribution function, because nus(r) becomes the density of
solvent molecules at r, and nus*(r) turns out to be constant and
equal to the bulk density of the solvent.
The minimum-distance densities nus(r) and nus*(r) differ from

the densities of the solvent, because they are associated with the
counting of any atom of the solvent molecule at each distance.
For example, in the absence of solute−solvent interactions, the
density of atoms of the solvent at short distances is associated
with the probability of finding any atom of the solvent at that

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00599
J. Chem. Theory Comput. 2017, 13, 6358−6372

6359

http://dx.doi.org/10.1021/acs.jctc.7b00599


distance, which corresponds to the atomic density, not the
molecular density of the solvent. The difference between the
two densities will be discussed in further detail in Section 2.2.
The Kirkwood-Buff integral can be obtained from nus(r) and

nus*(r). To this end, let us define an integral up to a finite
maximum distance R from the solute, as

∫ρ
= − *G R n r n r S r r( )

1
[ ( ) ( )] ( ) d

R

us
s 0

us us

where S(r) is the surface defined by the minimum-distance r to
any solute atom. By integration, we obtain

ρ
= − *G R N R N R( )

1
[ ( ) ( )]us

s
us us

(2)

where Nus(R) and Nus*(R) are, in this case, the number of
solvent molecules with at least an atom within R of the solute,
in the presence or not of solute−solvent interactions, and ρs is
the bulk density of this solvent component. The volume
defined by distance R to the solute is, of course, dependent on
the shape of the solute. These equations are generalizations of
the standard equation to compute KB integrals from the
standard radial distribution function, for which we have S(r) =
4πr2 and nus*(r) = ρs for all r, and are needed here because of the
dependence of the minimum-distance densities on the shape of
the solute and solvent molecules.
A brief justification concerning the convergence of Gus(R)

defined in eq 2 to the actual KBI at the limit of R → ∞ can be
made in the following way. The equivalence of this definition of
Gus(R) at large R to the standard definition of KBIs requires
that4,35

⎯ →⎯⎯⎯⎯
⟨ ⟩

⟨ ⟩⟨ ⟩
−

→∞
G R V

N N
N N

V( )
Rus

s u

u s (3)

This can be achieved most simply by noting that for each
molecule the minimum-distance atom (i. e., the one which
takes the shortest distance from the solute molecule) is
uniquely defined (the configurational space in which there are
two atoms at exactly the same distance is infinitesimal and
hence can be neglected). Hence the Nus*(R) of eq 2 yields the
number of solvent molecules in the absence of solute−solvent
interactions, which is ⟨Ns⟩; hence →

ρ

*
VN R( )us

s
. That the

ρ
N R( )us

s

term converges to the first term of eq 3 can be justified by the
use of the inhomogeneous solvation theory, according to
which36

ρ
⟨ ⟩

⟨ ⟩⟨ ⟩
=

⟨ ⟩
⟨ ⟩

=
⟨ ⟩

V
N N

N N
V

N
N

Ns u

u s

s u

s

s u

s

where ⟨Ns⟩u is the number of solvent molecules in the
inhomogeneous system, i.e., in the presence of the solute at the
fixed position in the origin. That the number of solvent
molecules can be evaluated by enumerating the minimum-
distance atoms again guarantees that Nus(R) converges to
⟨Ns⟩u, thereby justifying that the KB integrals can be calculated
using eq 2.
For small R, the use of the minimum-distance counts for

Nus(R) and Nus*(R) associates the distance dependence of
Gus(R) with the gus

md(r) function of eq 1, providing the
connection between preferential solvation parameters and the
molecular structure of the solvent in the solute solvation shell.

2.2. Interpretation of the gmd(r) Distribution in Terms
of Atomic Contributions. Let us consider the case of a single
solute molecule and a single component of the solution, for
simplicity of notation (the subscript us will be omitted here).
Here we define r as the minimum distance between any point
in space and an atom of the solute. The minimum-distance
distribution function gmd(r) is defined in eq 1, as a function of
the density of minimum distances at distance r, n(r), and the
density of minimum distances at r in the absence of solute−
solvent interactions, n*(r).
Given a solvent atom of type i (i = 1,...N, where N is the

number of atoms of the solvent molecule), we define ni(r) as
the number density of atoms i at distance r from the solute,
such that ni(r)dV(r) is the number of atoms of type i within r
and r + dr. Then, we define the probability of, given that the
atom i is in volume element dV(r), this atom being the closest
atom to the solute. This probability is dependent nontrivially
on the shape of the surface associated with the volume element
at r and on the shape of the solvent molecule, and we will call it
wi(r). The revolutions of a solvent molecule that are associated
with an atom being the closest atom to the solute are illustrated
in Figure 1.

It follows that the contribution of atoms of type i to the
minimum-distance density at r will be ni(r)wi(r). The total
minimum-distance density at r is, therefore

∑=
=

n r n r w r( ) ( ) ( )
i

N

i i
1 (4)

The normalization of the gmd(r) function of eq 1 depends on
the computation of the density of minimum distances in the
absence of solute−solvent interactions. However, for each r, the
volume element associated with r is dependent on the structure
of the solute. The intuitive picture we develop here is that of a
“phantom” solute molecule, immersed in a solvent with bulk
properties, which will be useful to define the shape of the
minimum-distance surfaces for every r.
If the density of the solvent was that of bulk and there were

no solute−solvent interactions, the density of atoms of type i
(or any other type) at every distance is simply ni*(r) = ρs, the
solvent molecular density. However, the probability wi*(r) that
the atom is the closest atom to the solute is dependent on the
shape of the surface defined by r and on the structure of the
solvent molecule.
In general, the density of minimum distances at r in bulk is

then

∑ρ* = *
=

n r w r( ) ( )
i

N

is
1 (5)

Note that the minimum-distance density is in general larger
than the bulk solvent density. In particular, if r is short enough,

Figure 1. Fraction of revolutions of the solvent molecule (dashed blue
line), with rotations centered at atom i that preserves the atom as
being the closest to the noninteracting solute.
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n*(r) = Nρs, because wi*(r) = 1 for every i. In other words, the
minimum-distance density at very short distances is the atomic
density, not the molecular density of the solvent.
This result shows that the minimum-distance density differs

from the bulk solvent density even in the absence of solute−
solvent interactions. Each solvent atom contributes differently
to the minimum-distance summation, according to the wi(r)
parameter, which is the probability of it being the closest atom
to the solute if it is at distance r. wi(r) is associated not only
with the orientation of the solvent molecule relative to the
solute but also with the accessibility of each atom to the
solvent, which might change if the solvent intramolecular
structure is perturbed by the solute.
From eqs 4 and 5, it follows that the minimum-distance

distribution function can be written as

∑
ρ

=
∑ *

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g r

n r w r

w r
( )

( ) ( )

( )i

N
i i

i
N

i

md

1 bulk 1 (6)

which, as expected, is constant and equal to 1 in the absence of
solute−solvent interactions, where ni(r) = ρbulk for every i (and
wi(r) = wi*(r), by definition).
This definition provides a useful decomposition of gmd(r) in

terms of atomic contributions. gmd(r) can be considered as the
contributions of each atom of the solvent, with two weights:
first, the density of each atom relative to bulk density at
distance r, and second (in parentheses in eq 6), an orientational
parameter associated with atom at r being the closest atom to
the solute. An analysis of the distance dependence of the atomic
contributions is available in Appendix A.1.
2.3. Computation of Minimum-Distance Correlation

Functions. The process of obtaining the gus
md(r) (from eq 1)

and the corresponding KB integral (as defined in eq 2) is
illustrated in Figure 2. It relies on the construction of two
histograms: 1) the histogram of nus(r), which contains the
density of minimum-distance sites at a volume element in the
vicinity of r in the actual solute−solvent simulation, and 2) the
histogram of the normalization, nus*(r), which must contain the
density of minimum-distance sites in bulk solvent in the same
volume. The computation of nus(r) is a straightforward site
counting following directly from the simulation of the system of
interest. The choice of the method to compute nus*(r), however,
deserves further justification.
In the absence of solute−solvent interactions (that is, in the

presence of the “phantom” solute molecule), the density of any
specific atom at r is the bulk density of the solvent, and thus the
density of minimum distances at r is given by eq 5. It is
dependent on the conditional probabilities wi(r), of each
specific atom being the closest one to the solute if it is found at
distance r. These probabilities are dependent on the solvent
structure. For example, if the solvent contains a single atom w1
= 1 and hence nus*(r) = ρs, which turns out to be equivalent to
the normalization of standard radial distribution functions.
If the solvent has more than one atom, nus*(r) must be

obtained explicitly. The simplest conceptual alternative is to
perform a simulation of the pure solvent with bulk
concentration and compute the distribution by the insertion
of a “phantom” solute. Nevertheless, we will argue that nus*(r)
can be obtained by a numerical procedure which avoids having
to simulate the pure solvent.
First, we note that the probability, in bulk, of an atom at a

distance r of the solute being the closest atom depends only on
the geometry of the solvent molecule and on the shape of the

surface defined by r. It consists of the fraction of the revolutions
of the molecule, with atom i as the rotation center, that
preserves atom i as the closest atom to the solute, as illustrated
in Figure 1.
If the solvent molecule is rigid, the probabilities wi*(r) of eq 5

can be computed by the numerical integration of the rotations
of a solvent molecule at every distance. Equivalently, as
discussed in Appendix A.2, they can be computed by simulating
a set of noninteracting solvent molecules - with proper bulk
density - in the presence of a “phantom solute” or simply by
generating random positions and rotations for those molecules.
These noninteracting solvent configurations could be used to
compute the probabilities wi*(r) to use eq 5, or, more
conveniently, to compute directly the minimum-distance
count required for obtaining nus*(r).
If the solvent molecules are not rigid, their conformational

flexibility must be taken into account. The conformational
flexibility in this case is that of the solvent molecule in bulk
solvent. Therefore, it can be obtained by simulating the pure
solvent or by sampling solvent molecules from the bulk (large-
distance) phase of the solute−solvent simulation. Given a
properly sampled set of solvent molecule conformations, the
random solvent molecule distribution can be used to compute
the histograms for nus*(r).
Therefore, the algorithm we use here for computing nus*(r)

consists of the following:
1. Estimation of the bulk density of the solvent:

1.1. Determine by numerical integration the volume of the
“solute domain”, Vsolute−domain, defined by a distance to
any atom of the solute considered large enough so that
the solvent displays bulk properties outside this domain.

Figure 2. Illustration of the calculation of the minimum-distance
distributions. (A) A “solute domain” is defined as a region around the
solute outside of which the effect of the solute on the solvent structure
can be neglected for practical purposes. The volume of this region is
determined by numerical integration. The bulk density of the solvent is
then estimated from the number of solvent molecules outside the
“solute domain” and the complementary volume of the box. (B) A
random distribution of the solvent, with a density equal to the bulk
density of the simulation, but occupying the whole box, is used to
compute the minimum-distance density without solute−solvent
interactions. (C) Histograms are computed for the minimum-distances
counts obtained from the simulation and from the random solvent
distribution, to compute the gmd(r) distribution according to eq 1.
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1.2. Compute the volume of the bulk domain by Vbox −
Vsolute domain, where Vbox is the volume of the simulation
box.

1.3. Count the number of molecules of the solvent within the
solute domain, to obtain by subtraction from the total
number of molecules the number of molecules in the
bulk domain.

1.4. Using 1.2 and 1.3, estimate the bulk density of the
solvent component.

2. Generation of a noninteracting solvent box:

2.1. Choose a random molecule from the bulk region of the
simulation.

2.2. Generate a random position and orientation to the
molecule within the simulation box and compute the
minimum distance to the solute, to add to the histogram
of nus*(r).

2.3. Repeat steps 2.1 and 2.2 until Nrand molecules with
random positions were generated. Nrand must be large
enough to allow a proper sampling, thus it is reasonable
that it is at least of the order of the number of solvent
molecules in the simulation.

2.4. Scale the histogram of nus*(r) by ρs Vbox/N
rand, where ρs is

the bulk density of the solvent and Vbox is the total
volume of the simulation box. That is, adjust the
histogram to the proper bulk density.

With approximations of nus(r) and nus*(r) determined with
the procedures above, the correlation function gus

md(r) can be
computed from eq 1.
2.4. KB Integrals and Preferential Interaction Param-

eters. From the estimates of nus(r) and nus*(r) obtained with the
strategy summarized in the previous section, it is possible to
compute the distance-dependent KBI for each of the solvent
components independently using eq 2. These KBIs can be
compared with the corresponding gus

md(r) distributions for the
molecular understanding of the interactions that build up the
main characteristics of solvent accumulation or depletion from
the surface of the solute. Additionally, the preferential
interaction parameters in a ternary solution can be obtained
from the KBIs using, for example, the following expression for
the cosolvent4,11

ρΓ ≈ −R G R G R( ) [ ( ) ( )]uc c uc uw (7)

where ρc is the bulk density of the cosolvent component of
interest, and Guc(R) and Guw(R) are the KBIs for the cosolvent
and water, respectively. Alternatively, the preferential inter-
action parameter can be computed directly from the solvent
counts n(r) for each component as described by Baynes and
Trout19

ρ
ρ

Γ = −N R N R( ) ( )uc c
c

w
w

(8)

where Nw(R) and Nc(R) are the number of molecules of water
and the cosolvent within R from the solute, and ρw and ρc are
the corresponding bulk concentrations.
The distance R within which the number of molecules is

integrated must be large enough such that the properties of the
solution are those of bulk solvent, and Gus(R) is converged, but
minimizing the fluctuations of the Ns(R) counts. Baynes and
Trout estimated that the optimal R is the minimum distance for
which the distributions are converged to one within the
numerical errors.19 The difference between our procedure and

that of Baynes and Trout is that they use R as the distance
between the center of mass of the solute and the van der Waals
surface of the protein, while we define it as the minimum
distance between any atom of the solute and any atom of the
solvent. They find that 6 Å is adequate to obtain a qualitative
estimate of Γ.19 We use here R = 8 Å, according to the observed
convergence of the gus

md(r) distributions in our systems and the
intention to compare the preferential solvation parameters
quantitatively with the experimental data. The use of the
minimum distance between the solute and the solvent provides
a more precise definition of the distribution, and the molecular
picture of the solvation shell arising from this distribution
provides an intuitive representation of solute−solvent inter-
actions.

3. MATERIALS AND METHODS
Simulations of Ribonuclease T1 (RNaseT1) in solutions of
TMAO and urea were performed as follows. The solution
NMR structure of RNaseT1 (PDB id. 1YGW) was used.37 It
consists of 34 models, which were used as starting
conformations for independent simulations. The models were
solvated using the software Packmol38,39 in pure water, in
mixtures of water and urea, and in water and trimethylamine N-
oxide (TMAO), with added sodium and chloride ions for
system neutrality. The TIP3P model was used for water;40

CHARMM3641 parameters were used to simulate the protein.
Urea was simulated either with the CHARMM General

Force Field (CGENFF)42,43 or with the same force field but
substituting partial charges by those developed by Weerasinghe
and Smith44 to reproduce experimental KB integrals of
solutions of urea in water (urea KBFF model). In this case
we chose to preserve other nonbonded parameters of the
CGENFF model, particularly because the combination rules for
atomic radii of the KBFF model are different. The results
obtained supported this choice, and we will refer to this force
field as simply KBFF from now on. The details of the
parameters used are reported in Supporting Information Table
S2.
Three different force fields were used to simulate TMAO

molecules: the CGENFF model42,43 and two models developed
to reproduce experimental properties of aqueous TMAO
solutions, which are improvements over the popular Kast
model45 of TMAO. The second model was developed to
reproduce the osmotic pressures of TMAO solutions and will
be referred to as the Osmotic model.46 The third model was
more recently developed by Scheck et al.47 to reproduce
experimental transfer free energies of peptides by varying the
nonbonded parameters of the Kast model and will be referred
to as the “Optimized Kast” model or simply the OptKast
model.
Simulations were performed with the NAMD software,48

with a 2 fs time step, and were run at 298.15 K and 1 atm, with
12 Å van der Waals interaction cutoff and Particle Mesh Ewald
for evaluation of long-range electrostatic potential. Constant
temperature and pressure were maintained by a Langevin
thermostat with a damping coefficient of 5 ps−1 and Langevin
barostat with a piston period of 200 fs and a damping time scale
of 100 fs. The systems’ energies were minimized by 1000 steps
of conjugated gradient method (CG) and equilibrated by 100
ps of constant-temperature and constant-pressure (NPT) MD
with the protein fixed, followed by 100 CG steps and 100 ps
NPT MD with the Cα atoms fixed and finally 500 ps
unrestrained NPT MD. Production simulations were then run
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for 10 ns. For each solvent concentration, 34 independent
setups and simulations were performed starting with each of the
NMR models, for a total of 340 ns of production MD.
Simulations were performed for RNaseT1 in pure water, in urea
concentrations of 0.50, 1.00, and 2.00 mol × L−1, and for
TMAO concentrations of 0.25, 0.50, and 1.00 mol × L−1 to
reproduce the experimental conditions reported by Lin and
Timasheff.31 Initial volumes were obtained from experimental
densities of the solvent mixtures.49,50 A total of 5.1 μs of
productive simulations were performed, using the high-
performance computing environment of the Center of
Computational Engineering & Science of the University of
Campinas. The details of the systems simulated are reported in

Supporting Information Table S1. Additional 400 ns simu-
lations of systems composed only of one urea or TMAO
molecule in 2000 water molecules were used for the examples
discussed in Section 4. These simulations were performed with
the same production protocol as described above.
The computation of the minimum-distance distribution

function was implemented as the gmd module of our
MDAnalysis software suite and is available at http://leandro.
iqm.unicamp.br/mdanalysis/gmd.51 A solvent molecule was
considered to belong to the bulk domain if all of its atoms were
farther from the protein than 8 Å. The distribution functions
and KBIs were observed to effectively converge at these
distance. The volume associated with a minimum distance of 8

Table 1. Kirkwood-Buff Integrals Computed from the Simulations in L × mol−1 Using the KBFF Urea Model44 and the Osmotic
TMAO Model46a

urea trimethylamine N-oxide

C Guw Guc Guw Guc

0 −7.756 ± 0.003 −7.756 ± 0.003
0.25 −7.731 ± 0.008 −10.46 ± 0.53
0.50 −7.919 ± 0.017 −0.55 ± 0.68 −7.683 ± 0.010 −10.81 ± 0.45
1.00 −8.081 ± 0.016 −0.83 ± 0.38 −7.618 ± 0.013 −10.61 ± 0.28
2.00 −8.268 ± 0.029 −2.55 ± 0.31

aThe deviations reported are the standard error of the means of the 34 simulations performed for each system. The experimental apparent molar
volume of RnaseT1 in water31 is ϕu

0 = 7.924 L × mol−1 and differs by 2.2% from the predicted value from the simulations (7.756 L × mol−1). Similar
results using the other force fields are provided in Supporting Information Tables S3 and S4.

Figure 3. Comparison of the standard radial distribution function and the minimum-distance distribution function for the study of the solvation of a
small irregular solute, as urea in water (using the KBFF urea model44). (A) Water-urea minimum-distance distribution function compared to the
radial distribution function (computed from water oxygen and urea carbon atoms). The distance of the peak of the g(r) distribution, at ∼3.8 Å, does
not correspond to direct interactions, whereas the peak of the gmd(r) distribution at ∼1.9 Å clearly indicates the presence of hydrogen bonds. (B)
Distance-dependence of the KB-integrals computed by integrating the g(r) (eq 9) or using the minimum-distance count (eq 2). The integrals are
equivalent for large r, but the use of the minimum-distance count shows that the first solvation shell essentially determines the final Guw(r) and
avoids fluctuations associated with the urea molecular volume. The urea model fits exactly the experimental apparent molar volume of urea (ϕu

0).50

(C) The decomposition of the gmd(r) distribution into atomic contributions shows that three types of interactions are important for the hydration
shell of urea: with water donating or accepting hydrogen bonds and secondary interactions with hydrogen atoms at ∼3.0 Å. (D) Illustration of the
interactions determinant for the distribution functions: the interactions of water hydrogen atoms with urea nitrogen atoms (at 3.03 Å in the figure)
can be associated with the shoulder of the gmd(r) distribution. (E) and (F) Comparison of two urea force fields. The KBFF model displays less
hydrogen-bond capacity than the CGENFF model, and the difference can be associated with the reduced bonding of urea to water oxygen atoms
(panel F), which results from the reduced partial charges of urea hydrogen atoms (Supporting Information Table S2).
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Å from the RNaseT1 surface contains a number of molecules
equivalent to that of a sphere of about 25 Å of pure water, such
that the fluctuations expected are smaller than those of a
conventional radial distribution function at much smaller
distances. Independent distribution functions were computed
for the simulations performed with each one of the 34 NMR
models, from frames extracted from the simulations at every 10
ps. The fluctuations of the distribution functions within the
simulations were negligible, and the fluctuations of the KBIs are
reported as standard errors in Tables 1, S4, and S5 and in
Figures 6 and S5. Finally, preferential interaction parameters
were computed using eq 7, with the standard error of the KB
integrals being propagated to Γ.

4. SOLVENT-SHELL STRUCTURE AND
KIRKWOOD-BUFF INTEGRALS OF IRREGULAR
SOLUTES: PROOF-OF-CONCEPT EXAMPLE

To illustrate the effectiveness of minimum-distance distribution
functions in representing the solvent-shell structure around
irregularly shaped solutes, we have performed simulations of
single urea and TMAO molecules in pure water. We discuss
here the results obtained for urea in water, with similar plots for
TMAO available as Supporting Information (see Table S3 and
Figure S2).
In Figure 3A, we illustrate the difference between the gmd(r)

and the standard radial distribution function, g(r), in
representing the water-urea interactions, for the KBFF urea
model44 solvated by water. The gmd(r) displays a peak at ∼1.9
Å, indicative of the formation of the expected hydrogen bonds.
In this example, the g(r) was computed between the water
oxygen atom and the urea carbon atom and displays a peak at
∼3.8 Å. Obviously, this peak also results from water-urea
hydrogen bonds, but the associated distance does not indicate
that because of the references sites for the calculation of the
g(r). Naturally, this analysis could be, for a small molecule as

urea, extended for the computation of the g(r) between other
pairs of sites, and a more clear picture of the solvation structure
could be obtained. However, the advantage of the gmd(r)
distribution is that it is properly defined for the representation
of the solvation structure for solutes of any size and structural
complexity.
In Figure 3B, we illustrate distance dependence of the KB-

integrals computed from the integration of the radial
distribution function, i.e.

∫π= −G R g r r r( ) 4 [ ( ) 1] d
R

us
0

2
(9)

or from the minimum-distance count, using eq 2. At large r, as
expected, both integrals converge to the same value, validating
the methods proposed here. The urea and water models in this
case reproduce precisely the experimental apparent molar
volume of urea.52 The KB integral computed from the
minimum-distance count (blue curve) is determined by the
excluded van der Waals volume of urea (which results to be of
the order of −72 cm3/mol (first dip)) and the accumulation of
water at the first solvation shell. The same integral computed
from the g(r) displays oscillations at larger distances, associated
with the molecular volumes of urea and water, which turn out
to perturb the integral up to a distance of 8 to 10 Å. The fact
that the integration from the minimum distances accounts for
the molecular volumes at short distances is fundamental for the
computation of KB integrals for larger solutes. Therefore, not
only the convergence of the KB integral is favored by the use of
the minimum-distance approach but also the molecular
interpretation of the integral for variable r is clearer than that
obtained from the standard radial distribution functions.
The gmd(r) distribution can, additionally, be decomposed

into atomic contributions, as we discussed in Section 2.2. This
decomposition is shown in Figure 3C. The peak at ∼1.9 Å
results from the contributions of hydrogen bonds to water
oxygen and hydrogen atoms. Additionally, there is a second

Figure 4.Minimum-distance distribution functions of (A) water in urea solutions, (B) urea, (C) water in TMAO solutions, and (D) TMAO, relative
to RNaseT1, for different cosolvent concentrations. The insets are augmented representations of the highest peak. These plots correspond to the use
of the KBFF44 model for urea and the Osmotic46 model for TMAO. Similar plots for other solute models are provided as Supporting Information.
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peak on the hydrogen distribution which explains the shoulder
of the complete gmd(r) distribution. All these peaks, being
associated with minimum distances between water and urea,
can clearly be linked to intermolecular configurations, as shown
in Figure 3D. The hydrogen bonding is associated with urea-
oxygen and urea-hydrogen bonding to water and is expected.
Additionally, the second peak of the hydrogen distribution can
be clearly traced down to the interaction of the water hydrogen
atoms with the urea nitrogen atoms, which is perpendicular to
the urea molecular plane. The specificity of these interactions is
hardly obtainable from the standard radial distribution
functions, for which the peak at ∼3.8 Å incorporates all types
of contributions.
In Figures 3E and F we show that this precise molecular

picture of solvation is useful for the interpretation, for example,
of the differences between molecular models used. The gmd(r)
and atomic contributions computed from simulations using the
KBFF model or the CGENFF model show that the KBFF leads
to a lesser propensity of urea to form hydrogen bonds with
water and that this is particularly associated with hydrogen
bonds with water oxygen atoms. This is probably a direct result
of the smallest partial charges of hydrogen atoms in the KBFF
model relative to the CGENFF model. These smaller charges
also favor the interactions of the water hydrogen atoms with the
urea nitrogen atoms, increasing the second peak of the
hydrogen distribution.
Finally, at long distances, the atomic contributions of water

converge to ∼0.21 for the oxygen atom and to ∼0.79 for the
sum of the hydrogen contributions (Figures 3C and 3F). This
is expected and is characteristic of the shape of the water
molecule and of the minimum-distance count at distances
where the interactions with the solute are negligible. A

theoretical analysis of these contributions is provided in
Appendix A.1.

5. RECONCILING PREFERENTIAL INTERACTION
PARAMETERS AND THE SOLVENT-SHELL PICTURE
OF PROTEIN SOLVATION

Our discussion will focus in this section on the simulations
performed with the KBFF44 for urea and with the Osmotic46

model for TMAO, because the experimental preferential
interaction parameters were better reproduced with these
models, as it will be shown. Similar data for the other models
simulated are provided as Supporting Information (Figures S3,
S4, and S5 and Tables S4 and S5).
Figure 4 displays the minimum-distance distribution

functions [gus
md(r)] computed for all systems simulated. As

expected, gus
md(r) distributions provide a very clear picture of

direct solute−solvent interactions. For example, Figure 4A
displays the distribution of water around the protein. A distinct
peak at ∼1.8 Å indicates the formation of hydrogen bonds. A
second peak at ∼2.7 Å is associated with the second hydration
shell. Water molecules therefore clearly form specific direct
interactions with the protein and display increased densities
relative to bulk at short distances. The addition of urea
decreases the relative water density at the surface of the protein,
indicating that urea competes with water with apparent greater
affinity (although there is a slight increase in the hydrogen-
bonding peak of water, as shown in the inset of Figure 4A).
Figure 4B shows the guc

md(r) distribution of urea relative to the
protein. The density of urea is 4 to 4.5 times greater at
hydrogen bonding distances than in bulk. Therefore, urea forms
a strongly favorable interaction with the surface of protein.
With increasing urea concentration, its local density augmenta-

Figure 5. Decomposition of the gus
md(r) into atomic contributions. Plots (B) and (D) are insets of (A) and (C) focused on the first and second

solvation layers. (A) and (B) Urea: the peak at ∼1.8 Å is determined by hydrogen bonds of the protein with urea hydrogen or oxygen atoms. Urea
only rarely interacts directly with the protein through its nitrogen or carbon atoms. The most important protein-urea interactions are associated with
hydrogen bonds through the hydrogen atoms. (C) and (D) TMAO: hydrogen bonds of the protein with a TMAO oxygen atom are associated with
the shoulder on the gmd(r) distribution at ∼1.7 Å. The most prominent peak of the distribution is, however, determined by hydrophobic interactions
of the protein with TMAO hydrogen atoms, which peak at ∼2.1 Å. The stability of hydrophobic interactions through the hydrogen atoms increases
with TMAO concentration. The contributions of TMAO nitrogen and carbon atoms for the gmd(r) distributions are negligible.
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tion decreases, indicating that the most urea-affine sites are
occupied.
Interestingly, as shown in Figures 4C and D, the distributions

of water and TMAO at the vicinity of the protein display
similarities to those of urea: both water and TMAO exhibit
augmented relative densities at short distances. The guw

md(r) of
water is perturbed by TMAO at hydrogen-bonding distances as
it was by urea. The density of water at larger distances appears
to be mostly unaffected by TMAO. TMAO also accumulates on
the protein surface, but the most important interactions occur
at ∼2.3 Å. A small shoulder at hydrogen-bonding distances is
also visible in Figure 4D. Contrary to what is observed for urea,
however, the relative density of TMAO increases at the highest
peak with increasing TMAO concentration. This means that
there might be some cooperative effect associated with TMAO
binding to the protein surface.
Therefore, gus

md(r) correlation functions indicate that all
molecules form specific and favorable interaction with the
RNaseT1, leading to the augmentation of their densities in the
proximity of the protein surface. This picture may, at first
glance, seem at odds with the common interpretation that
TMAO molecules are excluded from the protein surface. As we
will see, in spite of this molecular picture, there is no
contradiction when the preferential interaction parameters are
computed, at least for dilute solutions.
As discussed in section 2.2, the gus

md(r) can be naturally
decomposed into atomic contributions, allowing for a more
detailed structural interpretation of the solvent interactions
with the protein surface. Figures 5A and B show the
contribution of each type of urea atom to the urea gus

md(r)
distribution. Urea hydrogen and oxygen atoms account for the
interactions at short distances, as expected. Minimum-distance
interactions through the carbon or nitrogen atoms are
infrequent and occur only eventually at the second solvation
shell.

The decomposition of the guc
md(r) of TMAO into atomic

contributions, shown in Figure 5C and D, is more interesting,
because TMAO is an amphiphilic molecule. The small shoulder
at hydrogen bonding distances is almost completely determined
by the oxygen atom. At the same time, the significant density
augmentation at ∼2.3 Å results solely from methyl-hydrogen
contributions, thus being hydrophobic in nature. These
hydrophobic interactions are slightly strengthened with the
increase of TMAO concentration. The stabilization of hydro-
phobic interactions is possibly the underlying cause of the
apparent cooperative binding observed in the full guc

md(r)
distributions. At the same time, no particular trend can be
discerned on the oxygen minimum-distance distribution with
varying TMAO concentration.
Figure 6 and Table 1 display the KB integrals computed for

water, urea, and TMAO, in all systems. The KB integrals for
water are around −8 L × mol−1 in both cases (Figures 6A and
C). Therefore, water is overall excluded from the protein
domain. This exclusion results directly from the excluded
protein volume, and it is only slightly compensated by the
augmented density of water at the surface of the protein. The
addition of urea decreases the water KBIs, thus inducing further
water exclusion, while the addition of TMAO slightly increases
the water KBIs, indicating water accumulation on the protein
domain. Both effects are small relative to the overall KBIs
(Table 1). The value of the water−protein KB integral in pure
water, −7,756 L × mol−1, agrees within 2.2% with the
experimental apparent molar volume of RnaseT131 of 7.924 L
× mol−1. This indicates that that the water−protein interactions
are nicely modeled by the current force fields and provide
additional support for the methods proposed here.
Urea KBIs are numerically small, as shown in Figure 6B. This

indicates that urea accumulation on the protein surface almost
completely compensates the excluded protein volume (which
contributes negatively to the KBI). The urea KBIs decrease

Figure 6. Kirkwood-Buff integrals of (A) water in urea solutions, (B) urea, (C) water in TMAO solutions, and (D) TMAO, relative to RNaseT1, for
different cosolvent concentrations. The simulations using the KBFF44 and Osmotic46 force fields for urea and TMAO were used for these plots. The
experimental apparent molar volume (ϕu

0) of RNaseT131 in water is indicated by dashed lines in (A) and (C) and agrees within 2.2% with the KB
integral in pure water, indicating that the water and protein force fields are adequate to study water−protein interactions. Similar plots using other
force fields and numerical values of the integrals are available as Supporting Information.
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with increasing urea concentration, indicating, as the
distribution functions suggested, saturation of the urea
interaction sites on the protein surface.
The TMAO KBIs are around −11 L × mol−1 thus smaller

than those of water (Figure 6D). Therefore, TMAO is overall
excluded from the protein domain. The TMAO KB integrals
appear to become slightly more negative with increasing
TMAO concentration (Table 1 - last column) but within
numerical errors. The increase in the local density at
hydrophobic interaction distances (∼2.1 Å - Figure 4D) is
reflected in the Guc(r) integrals for up to about 4−5 Å. The first
solvation shell of TMAO roughly determines the final KBIs but
not to the precision required to distinguish a clear
concentration dependent trend, as with urea.
The profiles of the KBIs shown in Figure 6 reveal how the

accumulation or exclusion of the cosolvents is distance
dependent. The negative character of most KB integrals is
due to the rapid drop of Gus(r) at short distances and results
directly from the excluded molecular volumes. In all cases, at
roughly hydrogen bonding distances (∼1.8 Å) there is reversal
of the Gus(r) drop, due to the accumulation of the solvents at
the protein surface, as indicated in the gus

md(r) distributions.
Only for urea is this accumulation enough to completely
counteract the effect of the protein excluded volume. At about
∼6 Å, all KB integrals are essentially converged. Therefore, the
final KB integrals are determined mostly by the excluded
volume of the protein and the accumulation of the solvents in
the first solvation shell, characterized by protein−solvent
minimum distances between ∼1.8 Å and ∼3 Å.
Finally, from the KB integrals, it is possible to compute the

preferential interaction parameters to be compared with
experimental data. Figure 7 shows the preferential interaction
parameters computed from the simulations as a function of
each cosolvent concentration, compared with the experimental

parameters obtained by Timasheff.31 The results obtained for
all solvent models are shown.
The simulations reproduce the qualitative dependence of the

preferential interaction parameters for the osmolytes reasonably
well. Preferential interaction parameters, computed using eq 7,
consist of the increase or decrease in the number of solvent
molecules (water or osmolyte) on changing the concentration
of the protein.4 Therefore, for example, a negative value of Γ
indicates that the increase in the concentration of the protein
excludes solvent molecules.
Preferential interaction parameters for water, in urea or

TMAO solutions, are shown in Figures 7A and B. Water
preferential interaction parameters are deeply negative (Figure
7A), indicating there is preferential dehydration induced by
urea. By contrast, water preferential interactions are positive in
TMAO solutions. Therefore, the protein is preferentially
dehydrated in urea solutions and preferentially hydrated in
TMAO solutions. However, experimentally, the preferential
interactions with water increase with the increase in urea and
TMAO concentrations, and the trends are not properly
reproduced by the models, except perhaps for the KBFF urea
force field.
Figure 7C displays the preferential interaction parameters for

urea. It is positive at all concentrations, indicating that urea is
accumulated on the protein domain. The simulation results
agree almost quantitatively with the experimental data in this
case, specially when using the KBFF urea model.44 With
increasing urea concentration, the accumulation of the
denaturant is increased. That is, a greater number of urea
molecules accumulate on the protein domain. This occurs in
spite of the fact that the free-energy of urea binding to the
surface of the protein decreases, as indicated by the decrease of
the guc

md(r) peaks in Figure 4B at short distances. Therefore, the
simulations and the experiments predict urea accumulation on
the protein domain, associated with water exclusion.

Figure 7. Preferential interaction parameters for (A) water in urea solutions, (B) water in TMAO solutions, (C) urea, and (D) TMAO, relative to
RNaseT1, as a function of cosolvent concentrations. Experimental values were obtained from Lin and Timasheff,31 with experimental errors not
being significant for the purposes of this comparison. The error of the simulated data was computed by extrapolation of the standard error of the
KBIs.
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As expected, the preferential interaction of TMAO displays
the opposite trend, being negative at all concentrations (Figure
7D) and decreasing with the increase in TMAO concentration.
This means that TMAO molecules are excluded from the
protein domain, with qualitative agreement with the exper-
imental result.31 Therefore, more TMAO molecules are
excluded from the protein domain with increasing TMAO
concentration. Again, this occurs in spite of the fact that the
free-energy of TMAO to the protein surface now increases with
TMAO concentration, as indicated by the augmentation of the
guc
md(r) function at short distances (Figure 4D). The agreement
of computed preferential interaction parameters with with the
experimental values is quantitatively reasonable for the more
dilute solutions. For the 1.0 mol × L−1 solutions the exclusion
of TMAO from the protein domain is underestimated by all
models. Thus, the distribution functions of TMAO can be
trusted for the two most dilute solutions, but additional
improvements of the force fields appear to be necessary to
study protein-TMAO interactions at higher concentrations.
It is important to remark that the preferential accumulation

(for urea) or preferential exclusion (for TMAO) are both
associated with augmented local densities of the osmolytes at
the surface of the protein, as indicated by minimum-distance
distribution functions (Figure 4). The difference between urea
and TMAO is not qualitative in this sense but associated with
the greater urea accumulation, which is enough to completely
counteract the effect of the excluded protein volume. The
TMAO molecules also accumulate on the protein surface,
mostly through hydrophobic interactions.
This picture of the interactions of each cosolvent, either an

excluder or a crowder, with the protein surface, provides an
additional level of understanding of protein-osmolyte inter-
actions. Generally, protein stabilization is associated with
preferential hydration, and this indicates the exclusion of the
osmolyte from the protein surface, as has been identified
previously.31 This picture, although being correct from the
point of view of the preferential solvation parameters, might
lead to a misleading interpretation of the microscopic
interactions. Actually, both TMAO and urea (and it is likely
to be the case for other osmolytes) do accumulate on the
protein surface and interact therewith, possibly playing
additional roles in the protein stability and activity. This
microscopic picture is not contradictory with the observed
preferential interactions at low concentrations, which are
determined by the relative weights of the excluded solute
volume and solvent accumulation on the overall protein−
solvent interactions. The use of minimum-distance distribution
functions to visualize the solvent densities around the solutes
provides intuitive pictures of these interactions, with easy
atomic decomposition for structural interpretation.

6. CONCLUSIONS
The study of solvation of complex solutes, biomolecules in
particular, is fundamental for the understanding of their stability
in biologically or industrially important media. Distribution
functions provide the means to connect the microscopic picture
of solvation with experimental data, particularly preferential
solvation, which is associated with protein stability. However,
radial distribution functions are not appropriate for the
representation of the solvation structure around complex
solutes and neither for the computation of the KBIs, which
connect the molecular structure to thermodynamic data. The
experimental observation of the preferential exclusion or

accumulation of cosolvents often lead to the proposition of
thermodynamic models of protein stabilization based on the
hypothesis that some molecules avoid the interaction with the
protein surface.53−55

In this work we have shown that with minimum-distance
distribution functions both a molecular picture and the
experimentally determined interaction parameters can be
obtained from molecular dynamics simulations. The mini-
mum-distance distribution functions are clearly associated with
the solvation shell perspective which is often used intuitively to
describe cosolvent interactions in terms of accumulation or
exclusion.55 However, while we confirm that urea, a denaturing
osmolyte, accumulates preferentially on the protein surface and
TMAO, a stabilizer, is preferentially excluded, both interact
with the protein surface displaying density augmentation at
short distances from the protein. The most determinant and
universal factor associated with the exclusion of the solvent
molecules from the protein domain is the protein molecular
volume. The augmented densities of the solvent molecules at
short distances may or may not be enough to lead to overall
solvent accumulation on the protein domain, as measured by
the Kirkwood-Buff integrals.
We conclude, therefore, that the observation of augmented

densities of solvent components around proteins at a molecular
level can occur even if the species is net-preferentially excluded
from the protein domain, thereby acting as a stabilizer of the
protein structure. This picture, which can be obtained by the
use of minimum-distance distribution functions, provides an
additional level of understanding of protein−solvent inter-
actions and solvent induced stabilization. Finally, the
distribution functions proposed here can be used for the
study of solvation of solutes of any structural complexity
without modification.

■ APPENDIX A

A.1. Distance Dependence of Atomic Contributions to
gmd(r)
It is interesting to analyze the atomic contributions to the
minimum-distance distribution function at very short and very
long distances. Here we follow the notation used in Section 2.2.
Let us examine specific examples. For very short distances,

wi(r) = 1 for every i, thus

∑
ρ

=
=

g r
N

n r
( short)

1 ( )

i

N
imd

1 bulk

In the presence of solute-solvent interactions ni(r) = 0 for every
i at very short distances because of atomic volumes, thus gmd(r)
= 0.
Far from the solute, ni(r) = ρs for all i, thus the gmd(r)

reduces to the sum of the orientational contribution of each
atom, which sum up to one
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The orientational contribution of each atom to this sum is
dependent on the shape of the minimum-distance surface and
on the solvent molecule structure. Let us analyze the properties
of the orientational/conformational parameter w in more detail,
at long distances. If the distance between the solute and the
solvent molecule is large enough, the curvature of the
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minimum-distance surface will be small relative to the size of
solvent molecule. Let us assume that this surface is flat.
The simplest case with some interest is that of a diatomic

molecule, illustrated in Figure 8A. The parameter wi(r) will be,
for each atom, the fraction of revolutions for which the other
atom is farther from the solute. According to angles defined in
Figure 8A, this fraction is

∫ ∫

∫ ∫

θ ϕ

θ ϕ
= =

π

π

π

π π
−w r( )

d d

d d

1
2

0 /2

/2

0 0

2

A more interesting example is that of a triatomic molecule, as
water. It is illustrated in Figure 8B. In this case, the
reorientational parameter is dependent on the angle between
the two covalent bonds. For the central (oxygen) atom, it is

∫ ∫
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and for the hydrogen atoms, illustrated in the second panel of
Figure 8B, it is
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These predictions can be numerically verified in the atomic
decomposition water minimum-distance distribution functions
around urea and TMAO, which are shown in Figures 3, S1, and
S2.
At large r, ∑i

Nwi = 1, because the molecule is for this
computation a convex polyhedron, and the component of each
atom consists of a fraction of the rotation of the polyhedron
associated with each vertex. Many atoms might have zero
contributions for being in the interior of the polyhedron, as
illustrated in Figure 8D. The convergence of the gmd(r)
distribution to one at long distances corresponds to the
convergence of this sum, as the atomic densities all converge to
the bulk density. For the same reason, at long distances the
w(r) converge to the atomic contributions to gmd(r).
A.2. Numerical Integration Schemes for the Normalization
of the Minimum-Distance Distribution Function
Here we will demonstrate that the normalization of the
distribution functions by a random distribution of solvent
molecules, considering the appropriate density and intra-
molecular flexibility, is equivalent to the normalization by
solvent simulation in the presence of a noninteracting solute at
infinite dilution.
First, let us consider distribution functions computed

considering a single reference site at the solvent molecules
(as conventional RDFs), usually the center of mass of the

solvent molecule or one of its atoms. Let ρs be the bulk density
of the solvent. Without the solute, the ensemble average density
of the solvent is also ρs everywhere. This is the standard
normalization for distribution functions

ρ
ρ

=g r
r

( )
( )

s

where ρ(r) is the ensemble average density of solvent
molecules at position r. The normalization by ρs can be
considered equivalently as 1) a constant density equal to that of
bulk; 2) the average density of an ensemble of pure-solvent
configurations around a noninteracting solute; and 3) the
average density of random solvent configurations with average
bulk density (which is equivalent to an ideal-gas distribution of
the solvent).
Now, we consider the distribution function computed from

the minimum distance between any atom of the solvent and
any atom of the solute. Initially, we will consider the case of a
rigid solvent molecule. Let us suppose that a simulation of the
pure solvent was performed. The average density of any specific
atom at any position in space is ρs. A noninteracting,
“phantom”, solute is added to the solution, with no effect on
the structure of the solvent. Therefore, the atomic densities
remain unchanged. However, to compute the minimum-
distance distribution, we need to know which is the probability
that each atom, if found at a given position in space, is the
closest atom to the “phantom” solute, in order to compute the
normalization of the minimum-distance distribution using eq 5.
At this point, we note that all configurations of the solvent

which differ only by rotation around the atom of interest are
thermodynamically equivalent, because there are no solute-
solvent interactions. We illustrate these configurations which
differ by rotation in Figure 9. Therefore, the probability that the
reference atom is the closest atom to the solute is the same as
the fraction of these rotations that maintain the reference atom
as the closest atom. This is dependent, exclusively, on the shape

Figure 8. Orientational parameter at large distances: A) diatomic molecule, B) water molecule with oxygen as the closest atom, C) water molecule
with hydrogen as the closest atom, and D) general molecule as a convex polyhedron.

Figure 9. In the presence of a noninteracting solute, all configurations
of the solvent associated with rotations around a specific atom i are
equivalent. The probability of a solvent atom being the closest atom to
the solute is then solely dependent on the shape of the solute and on
the geometry of the solvent molecule.
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of the solute and on the geometry of the individual solvent
molecule. In particular, it is not dependent on the structure of
the solvent.
It follows, then, that the minimum-distance density at each

distance from the noninteracting solute can be computed by
purely geometrical parameters of the solute and an individual
solvent molecule, as described for long distances in the previous
section. Explicitly, it can be computed by generating at each
position r a solvent molecule centered at one of its atoms and
computing by numerical integration the fraction of config-
urations that preserve the reference atom as the closet atom to
the solute (w*(r) in eq 5). The procedure is repeated for each
atom of the solvent molecule at the same position, and the
atomic contributions w*(r) are summed up to compute the
n*(r) minimum-distance density of eq 5.
The numerical integration described above is equivalent to a

Monte Carlo integration by generation of many random
positions and rotations for solvent molecules around a
noninteracting solute. If the number of random molecules is
large enough, this procedure can be used to approximate the
fraction of configurations at each position in space that display
a specific atom closer to the solute. However, the explicit
computation of the probabilities w*(r) is not necessary in this
case, since the n*(r) minimum-distance counting can be
explicitly computed, with the only condition that the final
density of randomly generated molecules is adjusted to the
desired solvent density, as we describe in the procedure of
Section 2.3.
The simulation of the pure solvent and the generation of a

random solvent configuration for the computation of n*(r) can
differ, however, if the solvent molecules are not rigid. In this
case, the interactions within solvent molecules might alter their
geometry, thus directly affecting the probability of each atom
being the closest atom at each r. In this case, the ensemble of
the solvent molecules must reflect the conformational
variability of the solvent molecules in bulk solvent. It is not
possible to obtain that ensemble without simulating bulk
solvent. On the other side, if a bulk solvent simulation is
available, this problem is solved by randomly picking solvent
molecules from this simulation to numerically compute n*(r)
by the numerical procedure described. Here, the bulk solvent
configurations are obtained directly from the solvent molecules
at large distances from the solute.
Finally, let us remark that the solute conformations that are

considered here are those of the solute in the presence of the
solvent. The normalization is thought to evaluate how these
conformations affect the solvent structure and local density.
Thus, the minimum-distance distribution around the solute in
the presence of solute-solvent interactions, n(r), or without
them, n*(r), is computed from each solute conformation
obtained in the solute-solvent simulations independently, the
ensemble averages being the final reported result.
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Analysis of the Solvation of Coffee Ingredients in Aqueous Ionic
Liquid Mixtures. RSC Adv. 2017, 7 (6), 3495−3504.
(22) Mezei, M. Modified Proximity Criteria for the Analysis of the
Solvation of a Polyfunctional Solute. Mol. Simul. 1988, 1 (5), 327−
332.
(23) Song, W.; Biswas, R.; Maroncelli, M. Intermolecular Interactions
and Local Density Augmentation in Supercritical Solvation: A Survey
of Simulation and Experimental Results. J. Phys. Chem. A 2000, 104
(30), 6924−6939.
(24) Furlan, A. C.; Fav́ero, F. W.; Rodriguez, J.; Laria, D.; Skaf, M. S.
Solvation in Supercritical Fluids. In Solvation Effects on Molecules and
Biomolecules; Canuto, S., Ed.; Springer: Netherlands, 2008; pp 433−
453, DOI: 10.1007/978-1-4020-8270-2_16.
(25) Oliveira, I. P.; Martínez, L. Molecular Basis for Competitive
Solvation of the Burkholderia Cepacia Lipase by Sorbitol and Urea.
Phys. Chem. Chem. Phys. 2016, 18 (31), 21797−21808.
(26) Ou, S.-C.; Pettitt, B. M. Solute-Solvent Energetics Based on
Proximal Distribution Functions. J. Phys. Chem. B 2016, 120 (33),
8230−8237.
(27) Ou, S.-C.; Drake, J. A.; Pettitt, B. M. Nonpolar Solvation Free
Energy from Proximal Distribution Functions. J. Phys. Chem. B 2017,
121 (15), 3555−3564.
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