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Distribution functions are used to investigate the interactions between the components of condensed-
phase systems, while allowing the computation of thermodynamic properties that can be probed experi-
mentally. Radial distribution functions are the most fundamental and easily understood of these distribu-
tions, but fail to provide a molecular picture of the interactions when one or all species have complex
shapes. On the other hand, regardless of the complexity of the molecular structures involved, minimum-
distance distribution functions (MDDFs) can provide a molecular viewpoint on solute–solvent contacts.
Here, we describe the ComplexMixtures.jl package, which provides a practical implementation of MDDFs
and corresponding Kirkwood-Buff integrals to analyze Molecular Dynamics and Monte-Carlo simulations.
Examples are provided for the study of macromolecules in solutions of multiple cosolvents, homogeneous
systems, polymer solvation by organic solvents and lipid bilayer interactions with disruptive agents. The
distribution functions can be examinedusing tools to assess the contributions of each atom, group of atoms,
and amino acid residues, for example. ComplexMixtures.jl is free software and is compatible with themost
commonmolecular simulation trajectory formats. The software is available as a Julia package with a com-
prehensive documentation at: http://m3g.iqm.unicamp.br/ComplexMixtures.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Distribution functions are fundamental for the understanding of
the structure, interactions and thermodynamics of solutions. They
quantify the local fluctuations of some order parameter, usually the
density of some reference atom or site in a solvent molecule relative
to a solute, normalized by a reference state which can be computed
from, for example, an ideal-gas distribution of the same system.

The radial distribution function [1–3] is the most commonly
used measure of the solvent distribution surrounding a solvated
species. Given a single reference site in the solute and solvent
molecules (usually their centers of mass or one atom of interest),
the probability density profile of finding a distance between these
sites is computed for each distance and normalized by an equiva-
lent distribution in an ideal state. This provides a quantitative mea-
sure of the solvent accumulation or depletion caused by the
presence of the solute, directly connected to X-ray diffraction pat-
terns [4]. Appropriate integrals of these distributions (the
Kirkwood-Buff integrals) can be used to compute thermodynamic
properties of the solutions to be compared with experiments
[5–7]. Thus, simulations that correctly predict macroscopic proper-
ties of the solutions can be used to understand how observable
properties emerge from the molecular distributions of their con-
stituents [8,9].

If the molecules have complex structures, radial distribution
functions are inconvenient for depicting solute–solvent interac-
tions, and specialized representations of the density of the species
in space are required. For example, distribution functions can be
three-dimensional, representing the density of a solvent around a
solute at eachpoint in space [10,11].However, if the solute is flexible
these representations of the solvent density are not intuitive,
because they are affected by themobile molecular groups. A variety
of different order parameters have been proposed to represent the
molecular interactions of solutes and solvents in solutions [1,12–
17]. Many-body distributions, which can provide insights into the
correlation of multiple particles [18–20], angular distribution func-
tions [21–23], anddistribution functionsofmixedgeometrical prop-
erties [21,24,25] are examples. Additional order parameters can
help to clarify the composition of, for example, the second solvation
peak, or of the broadening of the first peak [24], but interpreting the
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distributions from a molecular standpoint can be challenging.
Strategies for reducing the dimensionality of the representations
of such distributions must be used [26–30].

Distribution functions that are computed from the shortest dis-
tance between a solute and a solvent reference site were proposed
decades ago for calculating energetic and thermodynamic proper-
ties of solutions [1,12,13,31]. More recently, we investigated the
use of generalized Minimum-Distance distribution functions
(MDDFs) for the analysis of the interactions between complex
solutes and solvent molecules, particularly biomolecules in solvent
mixtures [32–35]. MDDFs are the distribution functions of the
minimum distance between any solute and any solvent atom (be-
ing other distributions based on minimum-distances particular
cases of MDDFs). The peaks and dips of the MDDFs are always asso-
ciated with the closest interactions between solute and solvent
atoms, and the interpretation of these distributions in terms of
intermolecular interactions at nearest-neighbour solvent shells is
very convenient. Normalization of the MDDFs, on the other hand,
is difficult, requiring volume integration of the space associated
with each solute atom as well as the probability of finding any sol-
vent atom at each element volume [32]. However, with the right
normalization strategy, the MDDFs allow the computation of KB
integrals and thermodynamic properties, while providing a rich
view of the molecular interactions regardless of the structural
complexity of the species involved.

ComplexMixtures.jl is a practical implementation of MDDFs and
associated analytical tools that enables a comprehensive under-
standing of solute–solvent interactions in solutions of complex-
shaped molecules. We illustrate how the MDDFs can be used to
understand the interactions in complex molecular systems by
investigating the solvation of proteins in mixed solvents, homoge-
neous mixtures of small molecules, polymer solvation, and the
interactions of a lipid bilayer with disruptive agents.

The package is distributed as free software under the MIT

license at http://m3g.iqm.unicamp.br/ComplexMixtures.
2. Approach

The ComplexMixtures.jl package was implemented in the Julia
language [36], allowing the development of a dynamical, flexible,
and extendable library that is performant and parallelizable.

The efficient computation of minimum-distances between
objects of arbitrary shape demands specialized methods. Here,
the distribution function is computed up to a maximum distance
defined by a cutoff. Distances greater than that of the cutoff are
not considered, so cell lists [3] can be used to obtain the MDDFs
in O(n) time. However, because the minimum distance between
any atoms of the molecules is desired, these short distances must
be stored and sorted for each molecule, adding complexity and
computational cost. In ComplexMixtures.jl, auxiliary arrays of dis-
tances and indices are dynamically allocated for that accumulation
and sorting. This efficient cell list implementation is also available

as a standalone library (https://github.com/m3g/CellListMap.jl)
[37], allowing for the implementation of custommolecular simula-
tion analysis routines. The Chemfiles library is used to obtain com-
patibility with the most popular simulation trajectory formats [38].

Normalization of the MDDFs must be accomplished through
numerical integration. In ComplexMixtures.jl we generate many
distributions of the solvent molecules with the proper bulk den-
sity, around a non-interacting solute [32]. When only single refer-
ence sites are considered in the solute and in the solvent, this
reduces to the usual spherical-shell count of radial distribution
functions. When considering the shortest distance between a sin-
2

gle solvent atom and the atoms of the solute, this corresponds to
the normalization of proximal, or solvent-shell, distribution func-
tions [12,32,39].

The computation of the MDDF along a trajectory is almost
embarrassingly parallel, because site counting can be performed
independently for each frame. Coordinates for each frame are read
sequentially, and asynchronous tasks are launched to compute the
MDDF for each frame. The main thread remains in charge of read-
ing the trajectory reading and launching the computations.
2.1. Setup of the calculation

Code 1 shows a minimal input file. The user must provide the
system’s structure as a PDB file, and select the atoms of the solute
(the ‘‘protein”) and of the solvent (‘‘TMAO” molecules, in the exam-
ple). Structure reading and atom selections are carried out here

using the PDBTools.jl package (https://github.com/m3g/PDBTools.

jl), which was also developed to provide convenient selection syn-
tax for the current project. These selections are fed into an appro-
priate data structure (Selection type) that contains the indexes of
the atoms and molecular identities. The Trajectory constructor is
used to read the trajectory, and it is then passed to the mddf func-
tion for calculation. The distribution functions, KB integrals, and
atomic contributions will be stored in the results variable. More
than one molecule can combine to form both the solute set and
the solvent set. If the solute and solvent comprise the same set
of molecules, an auto-correlation function is computed.

Code 1. Input example for ComplexMixtures.jl, to investigate the
protein-TMAO interactions in a solution. The trajectory is provided
here in the DCD format.
2.2. Output

The MDDFs, KB integrals, atomic contributions to the MDDF, atom counts, and
other auxiliary variables are all stored in the results output variable in Code 1.

Code 2 shows the typical MDDF calculation output summary from Com-
plexMixtures.jl. The estimated molar volumes of the solute and solvent in the sim-
ulated system and in the bulk phase of the solution are given. Depending on its
accumulation or depletion in the vicinity of the solute, the molar volume of the sol-
vent in the bulk phase may be greater or smaller than the overall molar volume
computed from its density in the simulation. The convergence analysis of the distri-
bution functions allows for the consistency of the calculation to be checked. The
RDF displayed is computed from a single reference atom, which can be specified
by the user or is assumed to be the most central atom of the solvent molecule.
The corresponding KB integral computed from this RDF is also computed and must
converge to the same value as that computed from the MDDF over long distances.

The data can be analyzed directly within Julia scripts (comprehensive examples
are provided in the user manual) or exported to standard ASCII files for use with
other analysis software. The outcomes obtained from multiple trajectories can be
concatenated.

http://m3g.iqm.unicamp.br/ComplexMixtures
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Code 2. MDDF calculation output summary from ComplexMixtures.
jl. A summary of solute and solvent properties, as well as the con-
verged values of the distributions over long distances is provided.

3. Examples
In this section, we will look at some examples of how
minimum-distance distribution functions can be used to better
understand the solution structure and interactions of mixtures of
complex molecules. We’ll start with a common application: study-
Fig. 1. Minimum-distance distribution functions of A) water and B) glycerol relative to a p
integrals associated with the MDDFs shown in A and B. D) Calculation time and scaling fo
computers, typical analysis time is in the order of a few minutes and scales linearly with t
water and glycerol, respectively.

3

ing a biomolecule in solution. Then, a simple homogeneous binary
mixture of water and glycerol is analyzed. The third example con-
cerns the dimethylformamide solvation properties of a polyacry-
lamide model. Finally, we demonstrate the application of
minimum-distance distribution functions to the investigation of
the solvation of a POPC lipid bilayer by a mixture of water and
ethanol, where ethanol is known to disrupt the membrane.

The entire set of examples, including input files and the analysis

scripts can be found at http://github.com/m3g/ComplexMix-

turesExamples. Previous publications on the understanding of pro-

tein solvation by ionic liquids [34,40], and other denaturing or
stabilizing osmolytes [32,33,35] provide additional examples.
3.1. Protein solvation by mixtures of cosolvents

The first example consists of a protein (Subtilisin Carlsberg [41])
dissolved in 50% by volume solution of water and glycerol. In
Fig. 1A, we begin by demonstrating the most basic distribution
function: that of water molecules relative to the protein. The total
MDDF has two clearly discernible peaks, at � 1.8 Å and at � 2.6 Å.
Specific (hydrogen-bonding) interactions are reflected by the peak
at � 1.8 Å. The MDDF can be decomposed into the contributions of
the different types of water atoms. Both hydrogen and oxygen
atoms contribute to hydrogen bonds at a rate of approximately
rotein and their decomposition based on the solvents’ atom types. C) Kirkwood-Buff
r a 60-thousand-atom system for a 2-thousand-frame trajectory. In today’s personal
he number of available processors. E) and F) Solvation of each amino acid residue by

http://github.com/m3g/ComplexMixturesExamples
http://github.com/m3g/ComplexMixturesExamples


Fig. 2. A homogeneous mixture of 1000 water molecules (red) and 1000 glycerol
molecules (purple). The glycerol molecular structure is shown. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Structure of a 1:1 (mol/mol) solution of water and glycerol. A) Glycerol and
water minimum-distance distribution functions relative to glycerol. Hydrogen-
bonding is observed in both distributions, but non-specific interactions are more
prominent in the glycerol auto-correlation function. B) Kirkwood-Buff integrals of:
Glycerol molecules are possibly slightly preferentially hydrated, as indicated by the
greater KB integral for water at large distances. C) Group contributions to the
glycerol auto-correlation function. The hydrogen-bonding peak is associated to
hydroxyl groups, and the aliphatic groups contribute significantly only to the
second solvation peak. D) Glycerol group contributions, as a solute, to the water-
glycerol distribution function. The hydroxyls are responsible for the specific
interactions with water at hydrogen-bonding distances. E) and F) Glycerol group
contributions to the glycerol auto-correlation and glycerol-water correlation
functions. It becomes apparent that the second peak of the distributions, associated
with non-specific interactions, corresponds to the solvation of the CH2 groups. The
CH group is largely protected from the solvents.

L. Martínez Journal of Molecular Liquids 347 (2022) 117945
2:1. As a result of the geometry of the water molecule, the contri-
butions of hydrogen and oxygen atoms converge to � 0.79
and � 0.21 at long distances, respectively: the contributions of
each atom for the MDDF at long distance depend on the fraction
of the molecule’s surface area that is associated with each atom
(see the Appendix A of [32]).

Fig. 1B depicts the glycerol distribution relative to the protein,
which is also decomposed into group contributions. We spit the
glycerol MDDF into the hydroxyl and aliphatic contributions. As
expected, a hydrogen-bonding peak is observed, which is com-
pletely determined by the interactions of the hydroxyl groups.
Interestingly, both the hydroxyl and aliphatic groups of glycerol
contribute to the second peak, which is associated with non-
specific interactions.

Fig. 1C shows the Kirkwood-Buff integrals of water and glycerol
calculated from the MDDFs of Fig. 1A and 1B. The distance depen-
dence of the KB integrals computed from the MDDFs is interesting
because it reflects the excluded volume associated with the solute
and solvent molecules at short distances, and the possible compen-
sation of this excluded volume by favorable solvation interactions.

The local density augmentation of the solutes, associated with
the MDDF peaks at short distances, compensate (here partially)
for the excluded volumes. However, in this case, both KB integrals
are negative. Since the KB integral for glycerol is greater (less neg-
ative) than that of water, the protein is preferentially solvated by
glycerol. This is a known problem with the CHARMM36 force-
field for carbohydrates [42], as glycerol is preferentially excluded
and protects the protein from unfolding in experiments. Other pro-
tective osmolytes, such as TMAO, can exhibit density augmenta-
tion at the protein surface even when the protein is
preferentially hydrated, this being consistent with experimental
findings [32].

Fig. 1E and 1F illustrate the fact that the MDDFs can be decom-
posed into the contributions of the solute atoms or groups of solute
atoms. In this case, the MDDFs of glycerol and water are decom-
posed into the contributions of the atoms of each protein amino
acid residue. The densities of solvent-protein minimum distances
are plotted as a function of the distance to the solute group in
the form of contour plots. Residues that do not contribute to the
MDDF are shielded from the solvent. Some residues in this exam-
ple stand out in their ability to interact with water but not with
glycerol (for example, K94 and V95). Three-dimensional represen-
tations of the density can also be obtained, as described in the user
manual.

Finally, Fig. 1D highlights the performance and parallel scalabil-
ity of the package. With the exception of the trajectory-reading
step, the problem is embarrassingly parallel, as the minimum-
4

distance count can be performed independently for each frame of
the trajectory. Scaling is linear with the number of computer cores
available while not being constrained by other running processes
or trajectory reading from the disk. On a personal computer, a typ-
ical trajectory analysis of 2-thousand frames of a system with 60
thousand atoms will currently take a few minutes. If necessary,
for very long trajectories, this can be sped up by lowering the pre-
cision of the numerical integration of the volumes on each frame,
because averaging over many frames improves the sampling by
itself.
3.2. Homogeneous mixtures

This example illustrates how to use ComplexMixtures.jl to
investigate the solution structure of a crowded (1:1 M) solution
of glycerol and water, at room temperature and pressure. The sys-
tem simulated is illustrated in Fig. 2. It consists of 1000 water
molecules and 1000 glycerol molecules. We compute the distribu-
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tion functions associated to water-glycerol interactions, and also
the glycerol-glycerol autocorrelation functions. The purpose of this
example is to demonstrate how to obtain a detailed molecular pic-
ture of the solvation structures in a homogeneous solution.

As shown in Fig. 3A, both water and glycerol form hydrogen
bonds with glycerol molecules, as shown by the peaks at � 1.8 Å.
The auto-correlation function of glycerol shows a distinct second
peak corresponding to non-specific interactions, which are most
likely associated with its aliphatic groups. The KB integrals associ-
ated to these distributions are shown In Fig. 2B, with the KB integral
for water being slightly greater. This means that glycerol molecules
are preferentially hydrated from a macroscopic standpoint, though
the difference is small and could be due to model limitations.

The distribution functions of Fig. 3A can be decomposed into
group contributions of the solute or solvent molecules. Here, we
partition the distributions into the contributions of the chemical
groups of the solute (glycerol in both cases). The contributions of
hydroxyls and aliphatic groups are depicted in Fig. 2C and 2D,
respectively. The interactions with the glycerol hydroxyl groups
are responsible for the first peaks of both distributions. The second
peaks contain significant contributions from all groups, particu-
larly the aliphatic groups of glycerol. These non-specific interac-
tions are stronger for the glycerol auto-correlation, resulting in
the larger second peak of the MDDF.

The above distributions can be decomposed further into the
contributions of each glycerol chemical group, as shown in
Fig. 2E and 2F. Two additional insights into the solution structures
can be obtained from these figures: first, the second solvation
Fig. 4. A 5-mer of polyacrylamide capped by methyl groups (spheres), in a solution
of dimethylformamide (sticks). The system is composed of 1 PolyACR chain and
5000 DMF molecules. The molecular structures of DMF and of the polyacrylamide
model are depicted.

5

peaks, at � 2.5 Å, are centered on the CH2 groups of glycerol.
According to the maps, the solvent molecules at these positions
may be interacting with the molecules at the first solvation shell,
where water or glycerol form hydrogen bonds with the solute
(an additional order parameter would have to be computed to con-
firm this hypothesis, as suggested in [24]). The second distinguish-
ing feature of the maps is that the CH group of glycerol is
particularly protected from both solvents.

3.3. Solvation of a polymer by an organic solvent

In this example we illustrate how the solvation structure of a
polymer can be studied with ComplexMixtures.jl. The system is a
5-mer segment of polyacrylamide capped with methyl groups
(PolyACR), solvated by 2000 dimethylformamide (DMF) molecules.
The system is interesting because of the various functional groups
and polarities involved in the DMF-PolyACR interactions, as well as
the structural complexity of this solute. A snapshot of the system is
shown in Fig. 4.

Fig. 5A shows the minimum-distance distribution function of
DMF molecules relative to polyacrylamide. A peak at � 2.3 Å indi-
cates that the solvent and the polymer have favorable non-specific
interactions. The peak is followed by a distinct dip, but there is no
Fig. 5. Polyacrylamide solvation by dimethylformamide. A) Minimum-distance
distribution function and B) Kirkwood-Buff integral of DMF relative to PolyACR. C)
Contributions of the DMF groups to the DMF-PolyACR distribution function,
showing that the broad peak of the distribution is a combination of hydrogen-
bonding interactions of PolyaACR with the carbonyl and of non-specific interactions
with the other chemical groups of DMF. D) Decomposition of the MDDF into the
chemical groups of PolyACR, demonstrating that hydrogen bonds occur through the
polymer’s amine groups. E) PolyACR group contributions to the MDDF: the terminal
methyl groups and the amines contribute the most. The central mer is shielded
from the solvent by partial polymer folding.



Fig. 6. POPC lipid bilayer solvated by 5000 water molecules (purple) and 1000 ethanol molecules (green). The structures of ethanol and of the POPC lipid are illustrated. The
POPC functional groups are: the charged Choline and Phosphate groups, the polar Glycerol group, and the lipid radicals Oleoyl (which contains the insaturation) and
Palmitoyl. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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discernible structure at greater distances. Thus, the DMF molecules
are structured around the polymer, but essentially only in its first
solvation shell.

From the KB integral it is possible to obtain the apparent molar
volume of the solute. The DMF-PolyACR KB integral is negative in
this case, as shown in Fig. 5B, indicating that the accumulation of
DMF in the polymer’s first solvation shell is insufficient to compen-
sate for the excluded volume of the solute. In this solution, the Poly-
ACR model has an apparent molar volume of about 300 cm3 mol�1.

The MDDF can be subdivided into the contributions of the DMF
chemical groups, and of the PolyACR chemical groups. The contri-
butions of DMF to the distribution function are shown in Fig. 5C.
Specific interactions at distances less than 2 Å indicate that
hydrogen-bonds form between the carbonyl group of DMF and
PolyACR. Less specific interactions, which peak at � 2.3 Å are dom-
inated by the methyl groups of DMF, with minor contributions
from all other chemical groups of the solvent molecules.

The decomposition of the MDDF in the contributions of the
polymer’s chemical groups, shown in Fig. 5D, enables the establish-
ment of some intriguing correlations with the contributions of the
DMF groups. The polymer amine groups are associated with the
specific hydrogen-bonding interactions. These, too, contribute to
non-specific interactions at greater distances, but only partially
as part of a pool of contributions from all polymer groups, polar
or aliphatic.

We can decompose the MDDF into the contributions of each
polymer chain segment. Fig. 5E’s contour plot depicts the contribu-
tions of each chemical group of the polymer, but now divided into
each mer of the polymer chain. The terminal methyl groups have a
strong interaction with DMF. Significant local density augmenta-
6

tions, corresponding to hydrogen-bonding interactions, are visible,
particularly on top of the amine groups. Surprisingly, the DMF
molecules are excluded from the polymer’s aliphatic and carbonyl
groups.

Finally, the central acrylamide mer is more weakly solvated by
DMF than the mers closer to the polymer chain’s extremes. This is
most likely due to the polymer’s partial folding. Thus, the MDDFs
provide insights not only into the interactions between solute
and solvent molecules related to the chemical nature of the groups
involved, but also into the system’s configurational equilibrium, as
illustrated here by solvent exposure of the polymer chain
conformations.

3.4. Lipid bilayer interactions with disruptive agents

The solutes under investigation can be a collection of molecules
in a heterogeneous mixture. Here, ComplexMixtures.jl is used to
investigate the interactions of a POPC bilayer with a mixture of
20% (mol/mol) of ethanol in water. Ethanol destabilizes the mem-
brane at this concentration [43,44]. The molecular system simu-
lated is illustrated in Fig. 6. The lipid molecules are regarded as a
single solute in this context. Importantly, the computation of the
MDDF does not need to be adapted to account for anisotropy of
the system: The normalization of the distribution is obtained by
generating random configurations of the solvent molecules in the
simulation box, with bulk density, and by computing the equiva-
lent distance histogram that is computed from the actual
simulation.

Fig. 7A displays the minimum-distance distribution functions of
water and ethanol relative to the lipid bilayer. Both solvents



Fig. 7. POPC lipid bilayer solvated by a mixture of water and ethanol. A) Minimum-distance distribution functions of water and ethanol relative to the POPC lipids. B)
Kirkwood-Buff integrals, suggesting that the bilayer is preferentially hydrated, despite the ethanol local density augmentation. C) Decomposition of the MDDF into the
contributions of the chemical groups of ethanol, revealing that the peak associated with non-specific interactions is mostly determined by the aliphatic chain of the solvent.
D) Decomposition of the ethanol-membrane MDDF into the chemical groups of the POPC lipids: ethanol penetrates into the membrane and interacts with the Glycerol, Oleoyl
and Palymitoyl groups. E) POPC contributions to the MDDF of water relative to the membrane reveal important contributions only of the charged groups of the lipids. F)
Interactions of ethanol with the lipid tails of POPC, showing that the insaturation leads to a discontinuity in the solvation structure, which is not present in the palmitoyl
group. G) Water does not penetrate into the membrane, avoiding interactions with the lipids’ tails.
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exhibit a local density augmentation in the range of � 1.7 Å
to � 3 Å. The water MDDF shows a clear peak at hydrogen-
bonding distances, whereas the profile of ethanol distribution is
dominated by non-specific interactions. At the first solvation shell,
ethanol has a greater local density augmentation than that of
water. However, the KB integrals associated with these distribution
functions, shown in Fig. 7B, indicate that the membrane is prefer-
entially hydrated (the KB integral of water is greater than that of
ethanol). In comparison with the MDDFs, the distance dependence
of the KB integrals is interesting to interpret: the excluded volume
associated with the membrane-ethanol interaction is greater than
that associated with membrane-water interactions (because of the
larger ethanol volume). This leads to the smaller KB integral for
ethanol despite its greater local density augmentation at the first
membrane solvation shell.

Fig. 7C shows the ethanol group contributions to the MDDF. The
hydroxyl group of ethanol, as expected, forms specific interactions
with the membrane. The aliphatic ethanol groups dominate the
peak associated with non-specific interactions. Fig. 7D and E show
the POPC chemical groups to the distribution functions of ethanol
(Fig. 7D) and water (Fig. 7E). Clearly, ethanol molecules can inter-
act with the glycerol and lipid groups of POPC molecules, while
water molecules cannot.

The contribution of each chemical group of the lipid tails to the
MDDFs can be computed to further investigate the penetration of
7

the solvents into the membrane. These are shown as contour plots
in Fig. 7F and 7G. Ethanol and water interact with the carbonyl
group at the head of the lipid groups, but ethanol is found all the
way down the lipid tails. Water, on the contrary, is excluded from
the lipid tails. Interestingly, ethanol does not solvate Oleoyl and
Palmitoyl equally: Oleoyl’s unsaturation is less affine to ethanol
than the other groups. Another intriguing finding is that the termi-
nal methyl groups of the lipids have significant interactions with
ethanol. These interactions occur primarily as a result of the bend-
ing of the lipid tails towards the membrane polar regions, reaching
portions of the membrane that are rich in ethanol molecules (not
shown). As a result, the MDDFs provide a detailed chemical picture
of membrane solvation, as well as insights into the mechanisms of
membrane disruption by cosolvents.

4. Conclusion

A package was created to study the solvation of molecules with
complex shapes via molecular dynamics or Monte-Carlo simula-
tions. It is primarily targeted, but not exclusively, at understanding
the solvation structures of biomolecules and other macro-
molecules. Minimum-distance distribution functions provide an
intuitive representation of molecular solute–solvent interactions.
The Kirkwood-Buff solution theory can be used to compute ther-
modynamic properties from the MDDFs, after the definition of a
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proper reference state. Tools are provided to investigate the contri-
butions of chemical groups, atoms, or any other subsets of the
solute and solvent molecules to the overall solvation structures,
providing a detailed picture of their interactions.
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Appendix A:. Methods

MDDF distributions are more expensive to compute than radial
distribution functions because the normalization depends on the
generation of random configurations of the solvents. Cell lists can
be used to obtain a practical implementation of this computation
[4]. For this package, a fast implementation of cell lists was imple-
mented in Julia, using modern algorithms [45]. This implementa-
tion was later split into an independent package, CellListMap.jl
[37], which can be used to implement diverse analyses and simu-
lations based on cutoff-restricted particle interactions. On shared
memory architectures, the performance CellListMap.jl is compara-
ble to that of state-of-the-art simulations packages such as NAMD

[46] (see https://github.com/m3g/2021_FortranCon/tree/main/cel-

llistmap_vs_namd). All graphics were prepared with the Plots.jl
package. The noise of the histograms was smoothed by computing
a moving average of 10 points, using EasyFit.jl. Molecular images
were produced with VMD [47].

All of the simulations in the examples were run with NAMD
[46], with CHARMM36 parameters [48–50] for proteins, lipids,
and carbohydrates, and the TIP3P model for water [51]. The molec-
ular structures of DMF and PolyACR were built with the JSME tool
[52], the POPC lipid bilayer was generated with the VMD mem-
brane plugin, and the entire systems were finally constructed with
Packmol [53,54]. The densities of aqueous solutions of glycerol
were obtained from [55], the density of DMF was obtained from
ref. [56]. The protein simulated in the first example is Subtilisin
Carlsberg (pdb id. 1SBC) [41]. All systems were designed to be large
enough such that solute minimum images were at least 30 Å apart.
In all examples we used the parameter dbulk = 20 Å, implying that
the bulk densities of the solvents were estimated from the number
of solvent molecules farther than that distance from the solute.

Details of the simulations of the first example are described
elsewhere [57,58]. All other simulations were performed specifi-
cally for the present work with the following protocol: The initial
systems were minimized by 5000 steps of conjugate-gradient min-
imization, followed by 10 ns of simulation with temperature and
pressure controls at 298.15 K and 1 Bar for equilibration. Next,
200 ns of simulation were performed also at constant temperature
and pressure, and the analyses were performed on these last tra-
jectories. The temperature was controlled by a Langevin ther-
mostat with a coupling constant of 10/ps, and the pressure with
a Langevin barostat with a piston period of 200 fs and a damping
scale of 100 fs. Short-ranged interactions were cutoff at 12 Å, and
long-range electrostatics was computed using the Particle-Mesh
Ewald Sum method [59].
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